Z-连通连续偏序集的遗传性及不变性  

Heredity and Invariance of Z-connected Continuous Posets

在线阅读下载全文

作  者:赵娜[1,2] 鲁静 ZHAO Na;LU Jing(Mathematics Staff Room,Changzhi Medical College,Changzhi 046000,China;College of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,China)

机构地区:[1]长治医学院数学教研室,山西长治046000 [2]陕西师范大学数学与信息科学学院,陕西西安710119

出  处:《模糊系统与数学》2018年第4期96-100,共5页Fuzzy Systems and Mathematics

基  金:国家自然科学基金资助项目(11601302)

摘  要:本文引入了Z_c-子空间的概念,证明了Z_c-连续(代数)偏序集对Z_c-闭集是可遗传的,并给出例子说明Z_c-连续偏序集的Z_c-Scott开集通常不是Z_c-连续的。最后我们证明了在特殊的连通集系统下,Z_c-连续(代数)性在既保局部基又保Z_c-集并的映射下保持不变,且Z_c-连续(代数)偏序集的收缩仍是Z_c-连续(代数)偏序集。In this paper, we introduce the concept of Zc-subspaces, and prove that Zc-continuous (algebraic) posets are hereditary to Zc-closed sets. We also construct an example to present that the Zc-Scott open sets of Zc-continuous posets may not be Zc-continuous. Finally, we consider a special connected set system, and then prove that Zc-continuity (algebraicity) is invariant under the mapping preserving local bases and supremum of Zc-sets. We also obtain that the contractions of Zc-continuous (algebraic) posets are still Zc-continuous (algebraic) posets.

关 键 词:范畴 连通集系统 Zc-连续(代数)偏序集 Zc-Scott拓扑 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象