检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔玮[1] 杜二玲[1] CUI Wei;DU Er-ling(China University of Geosciences Great Wall College Basic Teaching Depart ment,Baoding 071000,China)
机构地区:[1]中国地质大学长城学院基础课教学部,河北保定071000
出 处:《模糊系统与数学》2018年第4期169-173,共5页Fuzzy Systems and Mathematics
摘 要:概率空间上基于随机样本的统计学习理论被公认为是解决小样本学习问题的最佳理论,但它难以处理非概率空间上基于受噪声影响的随机样本学习问题。基于此,引入了机会空间上样本受噪声影响的经验风险泛函、期望风险泛函、经验风险最小化原则严格一致性的定义,提出并证明了机会空间上样本受噪声影响的学习理论关键定理。Statistical learning theory based on the random sample is considered as the best theory for solving the small sample learning problems on probability spaces. But it is difficult to deal with ran- dom samples learning problems when samples are corrupted by noise on non--probability spaces. In consideration of these facts, some new concepts, such as empirical risk functional, expected risk functional, and strict consistency of the empirical risk minimization principle built on chance space and based on random samples corrupted by noise, are introduced in this paper. The key theorem of learning theory is given and proved on chance space and based on random samples corrupted by noise.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.121.189