Theoretical Investigation of Structures,Bonding and Electronic Properties for the Complexes of 6-Mercaptopurine and Ag8 Clusters  

Theoretical Investigation of Structures, Bonding and Electronic Properties for the Complexes of 6-Mercaptopurine and Ag_8 Clusters

在线阅读下载全文

作  者:任宏江 朱刚 李小军 何亚萍 

机构地区:[1]Key Laboratory for Surface Engineering and Remanufacturing of Shaanxi Province,School of Chemical Engineering,Xi'an University

出  处:《Chinese Journal of Structural Chemistry》2018年第8期1233-1242,共10页结构化学(英文)

基  金:supported by the National Natural Science Foundation of China(No.21643014);the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City Government(No.2016CXWL02 and SGH17H249)

摘  要:The Ag clusters have been investigated widely theoretically and experimentally. In particular, it has recently shown that the neutral Ag8 clusters embedded in an argon matrix have a strong fluorescence signal. As we can know, the metal clusters may have important effects on the structures and properties of biomolecules. More and more attention is paid to the interaction between nanomaterials and biomolecules. In this work, the B3LYP method in density functional theory was used on the complexes between the 6-mercaptopurine(6MP) and Ag8 clusters combined with 6-311++G** as well as LANL2DZ base sets. The geometries of all the complexes were optimized with full degree of freedom and the structures, chemical bonds, orbital properties as well as Mulliken charges for ten possible complexes were analyzed based on the same theory level. In addition, the influence of temperature and pressure on the stabilities of the four complexes was further explored using standard statistical thermodynamic methods ranging from 50 to 500 K and at 100 kPa or 100 bar. The results show that the complex Ag8-6 MP-7-5 can be the most stable one among the investigated complexes, in which the Ag(11) atom interacts with the S(10) atom forming the strong chemical bond. The Mulliken charges also show that the Ag–S chemical bond is formed and the related charge has transferred. Additionally, the temperature and pressure can significantly influence the stability of the four stable complexes.The Ag clusters have been investigated widely theoretically and experimentally. In particular, it has recently shown that the neutral Ag8 clusters embedded in an argon matrix have a strong fluorescence signal. As we can know, the metal clusters may have important effects on the structures and properties of biomolecules. More and more attention is paid to the interaction between nanomaterials and biomolecules. In this work, the B3LYP method in density functional theory was used on the complexes between the 6-mercaptopurine(6MP) and Ag8 clusters combined with 6-311++G** as well as LANL2DZ base sets. The geometries of all the complexes were optimized with full degree of freedom and the structures, chemical bonds, orbital properties as well as Mulliken charges for ten possible complexes were analyzed based on the same theory level. In addition, the influence of temperature and pressure on the stabilities of the four complexes was further explored using standard statistical thermodynamic methods ranging from 50 to 500 K and at 100 kPa or 100 bar. The results show that the complex Ag8-6 MP-7-5 can be the most stable one among the investigated complexes, in which the Ag(11) atom interacts with the S(10) atom forming the strong chemical bond. The Mulliken charges also show that the Ag–S chemical bond is formed and the related charge has transferred. Additionally, the temperature and pressure can significantly influence the stability of the four stable complexes.

关 键 词:6-MERCAPTOPURINE Ags cluster density functional theory bonding properties 

分 类 号:O641.4[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象