检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓君[1] 田凤琳 ZHANG Xiao-jun;TIAN Feng-lin(Institute of Logic and Information,Siehuan Normal University,Chengdu,Sichuan610068,China)
机构地区:[1]四川师范大学逻辑与信息研究所,四川成都610068
出 处:《贵州工程应用技术学院学报》2018年第4期70-76,共7页Journal of Guizhou University Of Engineering Science
基 金:国家社科基金项目"面向中文信息处理的汉语语篇的逻辑语义及其推理模式研究";项目编号:16BZX081
摘 要:大多数逻辑学教科书和逻辑学者长久以来都在传播这样的观念:"在研究涉及单称命题的直言三段论的有效性时,单称命题可以视作全称命题来处理。"通过利用有效的单称命题三段论但其对应的直言三段论却是无效的11个事实,强而有力地否定了这一观念。经过提出的25个事实表明:利用广义量词理论和集合论,不仅可以形式化地表示关于单称命题的三段论,而且还可形式化地判断和证明其有效性及相关语篇推理的有效性。这些形式化的创新研究有利于语言学(包括计算语言学)、认知科学、人工智能、计算机科学中的知识表示和知识推理等相关研究的发展。Most of the logic textbooks and logic scholars have long been in the dissemination of the ideas that a singular proposition can be singular regarded as a universal proposition when one studies a syllogism including propositions. There are 11 valid syllogisms including singular propositions in this paper, but their cor- responding categorical syllogisms are invalid. The 11 facts strongly and forcefully reject this idea. The 25 facts in this paper illustrate that, by means of generalized quantifier theory and set theory, one can formally express a syllogism including singular propositions, and can formally judge and prove its validity and the validity of related discourse reasoning. The formal innovative achievements will benefit linguistics (including computational linguistics), cognitive science, artificial intelligence, knowledge representation and reasoning in computer science and so on.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.162.18