检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何中清[1] 王科苑 HE Zhong-qing;WANG Ke-yuan(School of Foreign Studies,University of Science and Technology Beijing,Beijing 100083,China)
出 处:《北京科技大学学报(社会科学版)》2018年第5期1-6,共6页Journal of University of Science and Technology Beijing(Social Sciences Edition)
基 金:2014年度教育部重大攻关项目"外语教育改革与发展研究"(编号为15JZD048)的部分研究成果
摘 要:衔接是形成语篇的重要成分,影响语篇的明晰性、恰当性和可理解性。文章在功能语言分析视角下探讨数学语篇中的衔接特征,重点关注各衔接手段的分布和实现形式,以及衔接距离等。研究发现,数学语篇中,指称和词汇衔接的使用频率最高,其次是连接,替代和省略很少出现;在实现形式上,指称中的定冠词the、指示代词this/these和副词here、连接中的递进连词and、因果连词therefore和时间连词firstly/secondly等都较多出现;在衔接距离上,数学语篇多依赖直接衔接纽带。研究有助于揭示数学语篇中的"组织"特征,推动学科英语研究的发展。Cohesion constitutes an important element in forming textuality,ensuring clarity,appropriateness and comprehensibility in text. The present paper explores the cohesive features in mathematical discourse from the perspective of functional language analysis( FLA),focusing on the distribution and realization of cohesive devices,and distance of cohesive ties. Findings reveal that in mathematical discourse the most widely used cohesive device is reference,followed by lexical cohesion and conjunction. Substitution and ellipsis are hardly ever used. In terms of realization,reference is dominated by the definite article the,the demonstrative pronouns this/these and the adverb here,while conjunction is mainly realized by the additive conjunction and,the causal conjunction therefore,and the temporal conjunction firstly/secondly. In distance of cohesive ties,mathematical discourse mainly relies on immediate ties to achieve cohesion. It is argued that the present study contributes to the exploration of the"organization"features in mathematical discourse,thus shedding new light on studies of disciplinary English.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28