检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈得良 彭一倜 CHEN Deliang;PENG Yiti(School of Civil Engineering,Changsha University of Science and Technology,Changsha 410004,Hunan,China)
机构地区:[1]长沙理工大学土木工程学院,湖南长沙410004
出 处:《力学季刊》2018年第3期622-630,共9页Chinese Quarterly of Mechanics
基 金:湖南省教育厅重点项目(16A003);国家自然科学基金(11172051);湖南省自然科学基金(2015JJ4006;13JJ4053)
摘 要:考虑碳纳米管复合材料作为功能梯度材料的不均匀性,基于连续介质理论以及哈密尔顿变分原理,建立了功能梯度碳纳米管增强复合材料开口圆锥薄壳结构的非线性运动偏微分控制方程,然后利用Galerkin法,将非线性偏微分控制方程转化为常微分控制方程,进而采用谐波平衡法求解了开口圆锥壳的非线性自由振动问题,并探讨了圆锥薄壳几何参数、碳纳米管参数对结构非线性自由振动的影响.数值研究表明结构的无量纲非线性自由振动频率与线性自由振动频率的比值随圆锥薄壳长厚比的增大而变小、并随圆锥角的增大而变大.Considering the inhomogeneity of nanotube-reinforced composites as functionally graded materials, the nonlinear dynamic partial differential control equations of nanotube-reinforeed composite opening conical shells are established based on the continuum theory and Hamilton variational principle. Applying Galerkin method, the nonlinear dynamic partial differential equations are transformed into a series of nonlinear dynamic ordinary differential equations. Furthermore, the harmonic balance method is used to solve the free vibration of nanotube-reinforced composite opening conical shells. Finally, the effects of geometric parameters of conical shells and the nanotube materials parameters on the nonlinear free vibration are discussed. Numerical results show that the ratios of non-dimensional nonlinear frequency to linear frequency would decrease with the increase of the length-to-thickness ratio, and increase with the increase of taper angle of the structure.
关 键 词:圆锥壳 碳纳米管 功能梯度材料 非线性 自由振动
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7