检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾蔓桐 孙永辉[1] 王义[1] 卫志农[1] 孙国强[1] AI Mantong;SUN Yonghui;WANG Yi;WEI Zhinong;SUN Guoqiang(Energy and Electrical College,Hohai University,Nanjing 210098,Jiangsu Province,China)
机构地区:[1]河海大学能源与电气学院
出 处:《中国电机工程学报》2018年第19期5846-5853,共8页Proceedings of the CSEE
基 金:国家自然科学基金项目(61673161);江苏省自然科学基金项目(BK20161510);中央高校基本科研业务费项目(2017B13914)~~
摘 要:动态状态估计对于电力系统的监测和稳定性分析具有重要意义。相量测量单元(phasor measurement unit,PMU)具备高采样率和同步数据,在动态状态估计中得到了广泛的应用。然而,由于PMU量测数据存在随机噪声,无法直接作为调度和控制的参考数据。基于此,该文提出一种基于插值H∞扩展卡尔曼滤波(interpolation H∞extended Kalman filter, IHEKF)的发电机动态状态估计方法。该方法在扩展卡尔曼滤波(extended Kalman filter,EKF)的基础上,利用自适应插值技术提高估计精度,并进一步采用H∞理论提高对噪声的鲁棒性。算例结果表明,IHEKF无论是在估计精度上还是在对噪声的鲁棒性能上较EKF均有所提高。Dynamic state estimation is essential for monitoring and analyzing power system stability. With high sampling rates and well synchronized data, phasor measurement unit (PMU) has been widely used in dynamic state estimation (DSE). However, the PMU data cannot be used directly by controlling and scheduling due to the stochastic noise. Based on interpolation H∞ extended Kalman filter (IHEKF), in this paper, a novel dynamic state estimation for synchronous machines was proposed. On the basis of the extended Kalman filter (EKF), by using the adaptive interpolation method and the H∞ theory, the accuracy of estimation and the robustness to measurement noise had been improved. Finally, simulation results show that the IHEKF performs well in the estimation accuracy, as well as the robustness to measurement noise, compared with the EKF.
关 键 词:动态状态估计 发电机 插值H∞扩展卡尔曼滤波 非线性 鲁棒性
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117