检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李常茂[1] 蒋桂梅[1] 鞠兴华[1] LI Changmao;JIANG Guimei;JU Xinghua(Shaanxi Railway Institute,Weinan 714000,China)
机构地区:[1]陕西铁路工程职业技术学院,陕西渭南714000
出 处:《水资源与水工程学报》2018年第4期224-229,共6页Journal of Water Resources and Water Engineering
基 金:陕西省教育厅专项科研计划项目(15JK1169)
摘 要:为建立一个全面且系统的高层建筑变形预测模型,本文首先利用卡尔曼滤波对变形数据进行去噪处理,分离出趋势项和误差项,再利用GA-BP模型和LS-GM(1,1)模型对趋势项进行预测,并通过组合得到趋势项预测值;其次,利用马尔科夫链对累计误差序列的进行修正,进一步提高预测精度;最后,利用尖点突变理论对高层建筑的稳定性进行评价,以验证预测模型的有效性。结果表明:半参数型卡尔曼滤波具有较好的滤波效果,且在趋势项的预测过程中,通过对BP神经网络的优化将平均预测精度由4.02%提高到了2.44%,而优化GM(1,1)模型则将平均预测精度由4.29%提高到了2.76%,说明本文的优化方法切实可行。通过误差修正,验证样本中的最大相对误差仅为1.63%,说明误差修正模型达到了进一步提高预测精度的目的,尖点突变理论的分析结果与预测结果相符,均得出高层建筑处于稳定状态,其后期变形将会持续减弱。To establish a comprehensive and systematic high-rise building deformation prediction model,this paper uses Calman filter for deformation data denoising,separation of trend and the error term,and then use GA-BP model and LS-GM(1,1) model to predict the trend,and obtain the trend prediction by combination;secondly,the cumulative the error data is corrected using the Markov chain,further improve the prediction accuracy;finally,the cusp catastrophe theory of stability of high-rise buildings are evaluated to verify the validity of prediction model.The results show that the semi parametric Calman filter has good filtering effect.In the process of forecasting trend,by optimization of the BP neural network,the average prediction accuracy was increased from 4.02% to 2.44%,and the optimization of GM(1,1) model increased the average prediction accuracy from 4.29% to 2.76%,showing that the optimization method in this paper is feasible.Through error correction,the maximum test sample in relative error is only 1.63%,indicating that the error correction model can further improve the prediction accuracy.Catastrophe theory and prediction results were consistent,the high-rise building is in a stable state,and its deformation will continue to be weakend.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.60