基于蒙特卡洛算法的中医药特性研究及应用  被引量:1

Research and Application of Chinese Medicine Characteristics Based on Monte Carlo Algorithm

在线阅读下载全文

作  者:李雅洁 朱畅 杨雨晴 魏杰[2] Li Yajie(Department of Imaging,Bengbu Medical College,Anhui Province,Bengbu 23300)

机构地区:[1]安徽蚌埠医学院影像学系,蚌埠233000 [2]安徽蚌埠医学院数理教研室

出  处:《数理医药学杂志》2018年第11期1581-1584,共4页Journal of Mathematical Medicine

基  金:安徽省高等学校省级质量工程重大教学研究项目(编号2016jyxm0665)

摘  要:用数据挖掘的方法分析了445味中草药的信息,发现其内容有缺失部分为功能主治、性味、采制等。借助蒙特卡洛算法,利用概率统计理论可以得到其余中药材性味与功能主治、生长地、植物形态的关联以及概率,通过比较相关已知内容,得出缺失的信息。由于信息量大,要先对信息特征进行数字化处理,用聚类分析的方法研究中药分布信息,通过使用SPSS软件中的聚类方法,比较中药各属性间的相似度,聚类得出最适合的分类情况,之后通过聚类谱系图以及最终聚类中心表分析出分布情况。最后,找出主治呼吸道感染的止咳中药,及患者所处地点、发病季节以及并发症状,筛选出符合治疗条件的中药,并根据药性及相关文献参考配制成止咳方案。By using the method of data mining, 445 flavors of herbal medicine information were analyzed,and found missing parts of the contents were indications, taste, collect and process and etc. By means of Monte Carlo algorithm, using the theory of probability and statistics, the rest of herbal’s taste and function, growth, plant morphology and association probability could be obtained. By comparing the relevant known content, to obtain the missing information. Because of the amount of information, the first was to digitize the information characteristics, analyzed Chinese medicine distribution information with clustering analysis. By using clustering method in SPSS software, compared similarity calculation between each attribute, obtained the most suitable clustering classification,then analyzed the distribution through cluster analysis and clustering center table. Finally, found the main treatment of respiratory tract infection of Chinese medicine cough, and the location of the patients, the onset of the season and complications, screening out the Chinese medicine eligible for treatment, according to the nature and the related literature reference to prepare the antitussive regimen.

关 键 词:数据挖掘 蒙特卡洛 聚类分析法 中药止咳 SPSS软件 R软件 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象