Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparUcles  被引量:4

Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparUcles

在线阅读下载全文

作  者:Xiaoyuan Ji Daoxia Guo Bin Song Sicong Wu Binbin Chu Yuanyuan Su Yao He 

机构地区:[1]Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China

出  处:《Nano Research》2018年第10期5629-5641,共13页纳米研究(英文版)

基  金:We thank Prof. Shuit-Tong Lee (Soochow University, China) for general help and valuable suggestions. We appreciate financial support from the National Basic Research Program of China (No. 2013CB934400), the National Natural Science Foundation of China (Nos. 61361160412, 31400860, 21575096, and 21605109), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

摘  要:Fluorescent silicon (Si) nanopartides (SiNPs) hold great promise for innumerable biological and biomedical applications owing to their unique optical properties and negligible toxicity. In this article, we present a new traditional Chinese medicine (TCM) molecule-assisted chemical synthetic strateg36 suitable for the production of multifunctional small-sized (diameter: - 3.7 nm) SiNPs in a facile and rapid (- 10 min) manner. Of particular significance, the resultant SiNPs simultaneously exhibited robust and stable fluorescence (photoluminescence quantum yield (PLQY): ~ 15%), as well as intrinsic anti-cancer efficacy with excellent selectivity toward cancer cells. Taking advantage of these unique merits, we further employed these novel fluorescent anti-cancer SiNPs (AC-SiNPs) for the fluorescence tracking and treatment of tumors, demonstrating long-term (~ 18 days) inhibition of tumor growth in tumor-bearing mice. Consequently, we believe this new TCM-assisted chemical synthetic method is highly attractive for designing silicon nanostructures featuring multiple functionalities, and we suggest these AC-SiNPs as novel promising tools for providing visual evidence of TCM-based cancer treatment.Fluorescent silicon (Si) nanopartides (SiNPs) hold great promise for innumerable biological and biomedical applications owing to their unique optical properties and negligible toxicity. In this article, we present a new traditional Chinese medicine (TCM) molecule-assisted chemical synthetic strateg36 suitable for the production of multifunctional small-sized (diameter: - 3.7 nm) SiNPs in a facile and rapid (- 10 min) manner. Of particular significance, the resultant SiNPs simultaneously exhibited robust and stable fluorescence (photoluminescence quantum yield (PLQY): ~ 15%), as well as intrinsic anti-cancer efficacy with excellent selectivity toward cancer cells. Taking advantage of these unique merits, we further employed these novel fluorescent anti-cancer SiNPs (AC-SiNPs) for the fluorescence tracking and treatment of tumors, demonstrating long-term (~ 18 days) inhibition of tumor growth in tumor-bearing mice. Consequently, we believe this new TCM-assisted chemical synthetic method is highly attractive for designing silicon nanostructures featuring multiple functionalities, and we suggest these AC-SiNPs as novel promising tools for providing visual evidence of TCM-based cancer treatment.

关 键 词:traditional Chinese medicine fluorescent silicon nanoparticles ANTI-CANCER 

分 类 号:TQ426[化学工程] TQ174.759

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象