机构地区:[1]Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA [2]Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA [3]Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA [4]Department of Radiology, University of Washington, Seattle, WA 98195, USA
出 处:《Nano Research》2018年第10期5670-5688,共19页纳米研究(英文版)
摘 要:Hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Inflammatory processes play a key role in the progression of this disease and may be amenable to a targeted pharmaceutical intervention. Curcumin is a dietary compound with potent anti-inflammatory, antioxidant, and antiapoptotic properties but is limited in therapeutic applications due to its low aqueous solubility, low bioavailability, and rapid first-pass hepatic metabolism. To address these limitations, loading curcumin into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles may increase relevant pharmacokinetic parameters and allow for effective drug delivery to the brain. Using the Vannucci model of unilateral hypoxic-ischemic brain injury in neonatal rats, we studied the in vivo effect of curcumin-loaded PLGA-PEG nanoparticles on brain uptake and diffusion of curcumin and on neuroprotection. The curcumin-loaded nanoparticles were able to overcome the impaired blood-brain barrier, diffuse effectively through the brain parenchyma, localize in regions of injury, and deliver a protective effect in the injured neonatal brain. The application of curcumin and PLGA-PEG nanoparticle-mediated delivery to a clinically relevant model of neonatal brain injury provides greater opportunities for clinical translation of targeted therapies for hypoxic-ischemic encephalopathy.Hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Inflammatory processes play a key role in the progression of this disease and may be amenable to a targeted pharmaceutical intervention. Curcumin is a dietary compound with potent anti-inflammatory, antioxidant, and antiapoptotic properties but is limited in therapeutic applications due to its low aqueous solubility, low bioavailability, and rapid first-pass hepatic metabolism. To address these limitations, loading curcumin into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles may increase relevant pharmacokinetic parameters and allow for effective drug delivery to the brain. Using the Vannucci model of unilateral hypoxic-ischemic brain injury in neonatal rats, we studied the in vivo effect of curcumin-loaded PLGA-PEG nanoparticles on brain uptake and diffusion of curcumin and on neuroprotection. The curcumin-loaded nanoparticles were able to overcome the impaired blood-brain barrier, diffuse effectively through the brain parenchyma, localize in regions of injury, and deliver a protective effect in the injured neonatal brain. The application of curcumin and PLGA-PEG nanoparticle-mediated delivery to a clinically relevant model of neonatal brain injury provides greater opportunities for clinical translation of targeted therapies for hypoxic-ischemic encephalopathy.
关 键 词:drug delivery NEUROPROTECTION brain penetrating neonatal hypoxia-ischemia CURCUMIN nanotherapeutics
分 类 号:Q581[生物学—生物化学] U294.26[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...