一种基于GSA-SVM网络安全态势预测模型  被引量:9

A Network Security Situation Prediction Method Based on GSA-SVM

在线阅读下载全文

作  者:陈玉鑫[1] 殷肖川[1] 谭韧 CHEN Yuxin;YIN Xiaochuan;TAN Ren(Information and Navigation College,Air Force Engineering University,Xi'an 710077,China)

机构地区:[1]空军工程大学信息与导航学院,西安710077

出  处:《空军工程大学学报(自然科学版)》2018年第5期78-83,共6页Journal of Air Force Engineering University(Natural Science Edition)

基  金:国家自然科学基金(71503260);陕西省工业科技攻关项目(2016GY-087)

摘  要:针对支持向量机的参数选择问题,结合引力搜索算法(GSA)需要设置的参数少以及全局优化能力强的特点,提出了一种GSA优化SVM参数的网络安全态势预测模型(GSA-SVM)。首先把SVM的参数视作在空间中的物体,并将SVM在该参数下预测产生的预测值和实际值之间的均方误差mse作为目标优化函数,然后GSA通过模拟万有引力规律影响下物体的运动规律不断变化参数,最终找到SVM最优参数。最后根据最优参数建立网络安全态势预测模型。在Matlab平台采用MIT Lincoln实验室提供的DARPA1999数据集进行仿真测试,仿真结果表明:相对于其它预测算法,GSA-SVM提高了网络安全态势预测的准确度,加快了网络安全态势预测的速度,为网络安全态势预测提供了一种新的解决途径。In order to more accurately master the laws of network security situation regular and prevent some network security threats, in view of the problem of parameter selection of Support Vector Machines, plus, the gravitational search algorithm (GSA) is characterized by few parameters needed and having great ability in global optimization, a network security situation prediction model (GSA-SVM) is proposed for GSA optimization SVM parameters. First, the parameters of SVM are treated as objects in space, and mean square error (MSE) of predicted value and actual value of SVM under this parameter is used as the objective optimization function, then GSA can find the optimal parameters of the SVM by simulating the law of gravitation, and finding the optimum parameter eventually. Finally, a network security situation prediction model is established according to the optimal parameters. Using DARPA 1999 data set provided by MIT Lincoln Laboratory in MATLAB platform, the simulation results show that GSA-SVM improves the accuracy of network security situation prediction and accelerates prediction of network security situation relative to other prediction algorithms. This provides a new way to solve problem of network security situation prediction.

关 键 词:网络安全态势预测 支持向量机 引力搜索算法 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象