检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学经贸管理学院
出 处:《价格理论与实践》2018年第8期127-130,共4页Price:Theory & Practice
摘 要:本文将东方财富网股吧的评论数据作为实证对象,利用文本挖掘技术构建金融领域的情感词典,通过贝叶斯方法将其合成网络情绪指数,应用ARMA-GARCH族模型分别刻画网络情绪与个股收益序列。结果表明:AKMA-GARCH族模型能有效解释网络情绪与股票收益的自相关性与异方差性;在短期内网络情绪对大多数个股的收益具有一定的预测作用,而个股收益对网络情绪的影响则具有较长时滞。Behavioral finance points out that investor sentiment plays an important role in making investment decisions. The study of the impact of investor sentiment reflected in online media on the stock market has a strong significance. This paper takes the comment data of the Guba East-money as empirical object, uses the text mining technology to constructs a sentiment dictionary for financial field, classifies the bullishness and bearishness of sentiment contained in the single stock comment by Bayesian method, and computes the network investor sentiment index. Based on this, the ARMA-GARCH model is used to characterize the network emotion and individual stock return respectively. The results show that ARMA-GARCH model can effectively explain the autocorrelation and heteroscedasticity of the network sentiment time series and stock retums time series. And the results of Granger causality test of residuals show that network sentiment has a predictor of returns for most stocks in short period,while stocks' returns have a long time lag on the impact of network sentiment.
关 键 词:网络投资者情绪 股票价格 文本挖掘 ARMA-GARCH模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.91.70