Toxicity assessment and histopathological analysis of nano-ZnO against marine fish(Mugilogobius chulae) embryos  被引量:5

Toxicity assessment and histopathological analysis of nano-ZnO against marine fish(Mugilogobius chulae) embryos

在线阅读下载全文

作  者:Jianjun Li Zhanming Chen Ren Huang Zongyu Miao Lei Cai Qingping Du 

机构地区:[1]Guangdong Laboratory Animals Monitoring Institute,Key Laboratory of Guangdong Laboratory Animals [2]Guangdong University of Technology,Guangzhou Higher Education Mega Center

出  处:《Journal of Environmental Sciences》2018年第11期78-88,共11页环境科学学报(英文版)

基  金:supported by the Science and Technology Programs of Guangdong Province(Nos.2015A020215031,2013B020600007,and 2012B050200002);supported by the National Key Technologies R&D Program of China(No.2015BAI09B05)

摘  要:The toxicity of nano-materials has received increasing attention in recent years. Nevertheless, relatively few studies have focused on their oceanic distributions and toxicities. In this study, we assessed nano-ZnO toxicity in marine organisms using the yellowstriped goby (Mugilogobius chulae). The relative differences in nano-ZnO dissolution and dispersal in seawater and fresh water were also investigated. The effects of nano-ZnO on embryonic development, deformity, hatching, mortality, and histopathology were analyzed. In addition, the effects of the Zn2+ concentration on M. chulae hatching and mortality were compared. The results showed that nano-ZnO had higher solubility in seawater than in fresh water. Nano-ZnO significantly inhibited hatching. By the fifth day of exposure, the LC50 of nano-ZnO was 45.40 mg/L, and the mortality rate spiked. Hatching inhibition and lethality were dose-dependent over a range of 1-25 mg/L nano-ZnO. Zn2+ inhibited hatching and increased lethality, but its effects were weaker than those of nano-ZnO at the same concentrations. Nano-ZnO also induced spinal bending, oedema, hypoplasia, and other deformities in M. chulae embryos and larvae. Histopathology revealed vacuolar degeneration, hepatocyte and enterocyte enlargement, and morphological abnormalities of the vertebrae. Therefore, nano-ZnO caused malformations in M. chulae by affecting embryonic growth and development. We conclude that nano-ZnO toxicity in seawater was significantly positively correlated with the associated Zn2+ concentration and sedimentary behaviour. The toxicity of nano-ZnO was cumulative and showed a critical point, beyond which embryonic and developmental toxicity in marine fish was observed.The toxicity of nano-materials has received increasing attention in recent years. Nevertheless, relatively few studies have focused on their oceanic distributions and toxicities. In this study, we assessed nano-ZnO toxicity in marine organisms using the yellowstriped goby (Mugilogobius chulae). The relative differences in nano-ZnO dissolution and dispersal in seawater and fresh water were also investigated. The effects of nano-ZnO on embryonic development, deformity, hatching, mortality, and histopathology were analyzed. In addition, the effects of the Zn2+ concentration on M. chulae hatching and mortality were compared. The results showed that nano-ZnO had higher solubility in seawater than in fresh water. Nano-ZnO significantly inhibited hatching. By the fifth day of exposure, the LC50 of nano-ZnO was 45.40 mg/L, and the mortality rate spiked. Hatching inhibition and lethality were dose-dependent over a range of 1-25 mg/L nano-ZnO. Zn2+ inhibited hatching and increased lethality, but its effects were weaker than those of nano-ZnO at the same concentrations. Nano-ZnO also induced spinal bending, oedema, hypoplasia, and other deformities in M. chulae embryos and larvae. Histopathology revealed vacuolar degeneration, hepatocyte and enterocyte enlargement, and morphological abnormalities of the vertebrae. Therefore, nano-ZnO caused malformations in M. chulae by affecting embryonic growth and development. We conclude that nano-ZnO toxicity in seawater was significantly positively correlated with the associated Zn2+ concentration and sedimentary behaviour. The toxicity of nano-ZnO was cumulative and showed a critical point, beyond which embryonic and developmental toxicity in marine fish was observed.

关 键 词:NANO-ZNO Mugilogobius chulae SOLUBILITY HISTOPATHOLOGY Spinal bending 

分 类 号:X171.5[环境科学与工程—环境科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象