检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何秋蓉 何子亮 古万荣 钟南[2] 孙远明[1] HE Qiu-rong;HE ZMiang;GU Wan-tong;ZHONH Nan;SUN Yuan-ming(College of Food Science,South China Agricultural University,Guangzhou 510642;Guangdong Food and Drug Administration,Guangzhou,510080;College of Engineering,South China Agriculture University,Guangzhou 510642;College of Mathematics and Information,South China Agriculture University,Guangzhou 510642;Guangdong Provincial Key Laboratory of Food Quality and Safety,Guangzhou 510642)
机构地区:[1]华南农业大学食品学院,广东广州510642 [2]华南农业大学工程学院,广东广州510642 [3]华南农业大学数学与信息学院,广东广州510642 [4]广东省食品质量安全重点实验室,广东广州510642
出 处:《现代食品科技》2018年第10期264-270,共7页Modern Food Science and Technology
基 金:国家重点研发计划项目(2017YF01601701);广东省食品安全重点实验室运行经费(2017B030314061);广东省现代农业产业技术体系创新团队农产品质量安全共性关键技术创新团队(2017LM2152)
摘 要:对五花肉的检测常使用化学检测或人工检测方法,但这两种常用方法都需要花费较大的成本和检测时间,且误差较大。为了提高识别准确度,降低检测成本,实现自动化检测。本文以猪肉腹部的五花肉为研究对象,使用最大类间方差自适应阈值法对图像R基色图层进行背景分离,并对图像进行中值滤波处理,从而获取图像的五花肉区域。针对五花肉图像中肥肉与瘦肉对比度不强的特点,采用有限对比度自适应直方图函数来增强肥瘦肉之间的对比度,再使用最大类间方差自适应阈值法分割五花肉图像的肥肉与瘦肉区域。通过实际图像样本的实验结果表明,本文方法比传统新近方法的识别准确率高。这说明本文方法通过自动阈值进行图像滤波处理方法可以有效区分肥肉和瘦肉区域,对其进行有效检测和识别。Chemical or manual detection methods are often used in the detection of five-flowered meat. The both methods are costly and time-consuming, and the errors are large. In order to improve the accuracy of this research, reduce the cost and achieve automatic detection, we used maximum interval variance adaptive threshold approach to separate the background of R-based color layer and filtered the image by median filtering in this paper. Aiming at the non-strong contrast between fat and lean meat in the five-flower meat image, we used the adaptive histogram function with limited contrast to enhance the contrast between fatness and lean meat, and then use the maximum interval adaptive threshold method to separate the fat and lean meat regions. The experimental results on the actual image samples showed that the proposed method is more accurate than the traditional new method. It shows that our method based on automatic threshold filtering can distinguish the fat and lean meat areas effectively.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TS251.7[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28