基于球面细分法的高效高精度近奇异积分计算  被引量:6

Evaluating Nearly Singular Integrals Accurately and Efficiently Based on Sphere Subdivision Method

在线阅读下载全文

作  者:李光耀[1] 何建平[1] 董云桥 张见明[1] Guangyao Li;Jianping He;Yunqiao Dong;Jianming Zhang(State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Chang sha,410082)

机构地区:[1]湖南大学汽车车身先进设计制造国家重点实验室

出  处:《固体力学学报》2018年第5期453-461,共9页Chinese Journal of Solid Mechanics

基  金:国家自然科学基金项目(11772125和11472102)资助

摘  要:精确高效地计算近奇异积分,对边界元法的成功实施至关重要,也是边界元法在实际工程计算中面临的主要障碍之一.论文提出了一种基于球面细分技术的近奇异积分计算方法,可以精确计算任意基本解类型、任意单元形状和任意源点位置的近奇异积分.该方法首先通过计算源点到单元的最近最远距离,来确定球面细分的初始半径和终止半径;然后通过一系列半径呈指数级增长的球面来分割积分单元,得到一系列三角形和四边形子单元;最后把细分后得到的子单元变成弧形状,即三角形和四边形子单元分别变成扇形和环形子单元.由于球面细分是直接在三维笛卡尔坐标系下进行的,所以它适用于任何类型的单元.此外,由于基本解主要是源点到场点距离的函数,因此在同等精度下,近奇异积分在子单元的环向上所需要的高斯积分点数将大大减少.在径向方向上,由于球半径系列呈指数级变化,各个子块可以做到等精度高斯积分.数值算例表明,与传统近奇异积分计算方法相比,论文提出的方法更加稳定,精度更高.The boundary element method(BEM)has been widely used for solving engineering and scientific problems.Compared with the finite element method(FEM),the BEM is more attractive for its smaller dimension and higher accuracy.The accurate and efficient evaluation of nearly singular integrals is of crucial importance for successful implementation of the BEM.The nearly singular integrals in the BEM have been studied for a long time,and many methods have been proposed.However,none of them can evaluate these integrals accurately and efficiently.In this paper,a method based on the sphere subdivision technique is proposed for evaluating nearly singular integrals.With the method,the nearly singular integrals can be evaluated accurately and efficiently for the cases of arbitrary fundamental solution type,arbitrary element shape and arbitrary source point location.In the proposed method,the minimum and maximum distances between the source point and the integration element are firstly computed,which determine the beginning and ending of sphere radius.Then the triangular and quadrilateral sub-elements are obtained by subdividing the integration element through a sequence of spheres with exponentially increasing radii.Finally,the obtained sub-elements are turned into the arc-shape ones,i.e.,the triangular and quadrilateral sub-elements are changed to the flabellate and annular sub-elements,respectively.The sphere subdivision is performed in the 3 DCartesian coordinate system,thus the proposed method is suitable for any elements.In addition,the fundamental solution is a function of the distance between the source point and the field point,so in the same level of accuracy,the number of Gaussian points can be greatly decreased in the circular direction for evaluating nearly singular integrals on sub-elements.Because of the exponential growth of sphere radius,the accuracy of integration can be of the same level in the radial direction.The numerical examples have demonstrated that the proposed method is much more stable and accu

关 键 词:近奇异积分 边界元法 单元子分法 高斯积分 

分 类 号:O175.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象