基于线性反馈策略的多阶段均值-方差投资组合优化  被引量:8

Multi-Period Mean-Variance Portfolio Optimization Based on the Linear Feedback Strategy

在线阅读下载全文

作  者:周忠宝[1] 刘湘晖 肖和录 刘文斌 ZHOU Zhongbao;LIU Xianghui;XIAO Helu;LIU Wenbin(School of Business Administration,Hunan Hunan Normal University,Changsha 410081;3.University,Changsha 410082;2.Business School,Business School,University of Kent,Kent CT27P)

机构地区:[1]湖南大学工商管理学院,长沙410082 [2]湖南师范大学商学院,长沙410081 [3]英国肯特大学商学院,肯特CT27PE

出  处:《系统科学与数学》2018年第9期1018-1035,共18页Journal of Systems Science and Mathematical Sciences

基  金:国家自然科学基金重点项目(71431008);国家自然科学基金面上项目(71771082);湖南省杰出青年科学基金(2017JJ1012)资助课题

摘  要:现有的多阶段投资组合优化问题普遍利用动态规划方法来进行求解,然而对于较为复杂的优化问题而言,该方法并不适用.针对此类复杂投资组合优化问题,文章首先在广义的多阶段均值一方差理论框架下,构建一类存在凸锥约束的投资组合优化模型.进而提出了一种有效的线性反馈策略,通过计算投资组合在各阶段财富值的收益和风险值,可将该动态随机控制问题转化为一个传统的凸优化问题.最后,在开环和闭环两种策略形式下通过数值仿真验证文章所提出反馈策略的有效性.结果表明,所提出的开环策略占优于已有的开环策略,且能够有效地拟合由动态规划所得精确投资策略.The existing multi-period portfolio optimization problems usually use dynamic programming approach to obtain the feedback investment strategy. However,this method may not work for some complex optimization problems. To address these problems, we construct a generalized multi-period mean-variance portfolio optimization model with convex cone constraints. We also propose an effective linear feedback strategy to deal with this problem. Then, the expected returns and risks of portfolio at each period can be calculated, and the dynamic stochastic control problem can be transformed into a traditional convex optimization problem. Finally, some numerical simulations are used to verify the effectiveness of the open-loop and closed-loop strategies. The results indicate that:(i) The performance of this proposed openloop strategy always outperforms that of the traditional open-loop strategy;(ii) This proposed linear feedback strategy can effectively fit the optimal investment strategy obtained by dynamic programming approach.

关 键 词:多阶段投资组合 均值-方差模型 线性反馈策略 

分 类 号:F224[经济管理—国民经济] F830

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象