检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王玲[1] 程耕国[2] 袁志强 蒋维 WANG Ling;CHENG Geng-guo;YUAN Zhi-qiang;JIANG Wei(Institute of Information Science and Technology,Wuhan University of Science and Technology,Wuhan Hubei 430081,China;Engineering Research Center of for Metallurgical Automation and Detecting Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan Hubei 430081,China)
机构地区:[1]武汉科技大学信息科学与工程学院,湖北武汉430081 [2]武汉科技大学冶金自动化与检测技术教育部工程研究中心,湖北武汉430081
出 处:《计算机仿真》2018年第11期98-102,共5页Computer Simulation
摘 要:及时并准确地预测风力发电系统短期风速,对于电网调度具有重大意义。由于风速具有随机性、间歇性,且含有大量噪声,因此会对预测精度造成较大误差,为了对短期风速进行精确、稳定地预测,提出了一种基于变分模态分解和高斯过程回归的短期风速预测模型。首先,对原始风速序列进行变分模态分解,获得多个子序列;然后对各子序列分别建立高斯过程回归预测模型,并引入量子粒子群算法代替共轭梯度法,改进协方差函数的超参数寻优过程。最后将各序列的预测值进行叠加得到风速预测结果,并与高斯过程回归、经验模态分解-高斯过程回归模型进行对比。仿真结果表明,变分模态分解和高斯过程回归组合模型能够有效提高预测精度,并为类似工程提供借鉴。Timely and accurate prediction of wind power system short-term wind speed grid scheduling is of great significance for the power. Because the wind is random and intermittent, and contains a lot of noises, it will lead to a significant error in the prediction accuracy of short-term wind speed. In order to predict the short-term wind speed accurately and steadily, a new model based on variational modal decomposition and Gaussian process regression is proposed. Firstly, the sub-sequence was obtained by the variational modal decomposition of the original wind speed sequence. Then, the Ganssian process regression prediction model was established for each sub-sequence, and the quantum particle swarm optimization algorithm was introduced instead of the conjugate gradient method, to improve the optimization process of super-parameter of variance function. Finally, the predicted values of each sequence were superimposed to obtain the wind speed prediction results, and compared with Gaussian process regression, the empiri- cal modal decomposition-Gaussian process regression model. The simulation results show that the variational modal decomposition and Gaussian process regression combination model can effectively improve the prediction accuracy and provide reference for similar projects.
关 键 词:风力发电系统 风速预测 变分模态分解 高斯过程回归 量子粒子群算法
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249