检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:井荣枝[1] 李萍[1] 尚怡君[1] JING Rong-zhi;LI Ping;SHANG Yi-jun(Sias International College,Zhengzhou University,Zhengzhou Henan 451150,China)
机构地区:[1]郑州大学西亚斯国际学院,河南郑州451150
出 处:《计算机仿真》2018年第11期366-369,400,共5页Computer Simulation
基 金:河南省科技厅科技攻关项目(182102210547);河南省科技厅科技攻关项目(182102210544);河南省高等学校重点科研项目(17A520017)
摘 要:对海量复杂图像细小特征进行检索能够提高图像信息提取的完整性。针对当前海量复杂图像细小特征检索方法存在的检索速度慢,对计算机运行速度影响较大,且检索图像质量差问题,提出一种基于快速稀疏编码的海量复杂图像细小特征检索方法,通过欧几里得距离确定图像细小特征区域与其相邻区域的颜色差,计算图像细小特征区域与复杂图像总的颜色相似度,根据颜色相似度,对图像细小特征色调的相对频率进行计算,完成图像细小特征提取。通过引入快速稀疏编码的方法,根据提取的图像细小特征构建检索模型,根据模型求解结果,实现海量复杂图像细小特征检索。实验结果表明,所提方法图像细小特征检索的速度较快,检索对计算机运行速度的影响较小,且检索出图像的质量较高。To retrieve small feature of massive complex images can improve the completeness of image information extraction. Therefore,a method to retrieve small feature in massive complex image based on fast sparse coding was presented. Firstly,Euclidean distance was used to determine the color difference between the small feature region of image and its adjacent region. Then,the total color similarity between the small feature region and complex image was calculated. According to the color similarity,the relative frequency of tone of small feature was calculated to complete the small feature extraction. Moreover,the method of fast sparse coding was introduced and the retrieval model was built based on extracted image small features. Finally,massive complex image retrieval features was achieved based on the result of model solution. Simulation results show that the proposed method has faster retrieval in small feature of image and less influence on the running velocity. Meanwhile,the quality of retrieved image is higher.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145