检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴雪瑞 袁雪[1,2] 乐国庆 张立平 DAI Xuerui;YUAN Xue;YUE Guoqing;ZHANG Liping(School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;Insight Future(Beijing)Technology Co.,Ltd,Beijing 100088,China;Beijing Huahang Radio Measurement Institute,Beijing 100013,China)
机构地区:[1]北京交通大学电子信息工程学院,北京100044 [2]创景未来(北京)科技有限公司,北京100088 [3]北京华航无线电测量研究所,北京100013
出 处:《北京交通大学学报》2018年第5期107-115,共9页JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基 金:国家自然科学基金(61871024;61673047)~~
摘 要:交通标志识别技术在室外复杂环境中,会有光照变化、标志褪色、标志倾斜和形变等不利因素的影响.目前,主流的检测算法使用颜色、形状或局部稳定特征进行交通标志的检测.但这些算法在复杂场景下检测精度低,鲁棒性差.为了达到较好的检测效果,提出一种基于颜色对和最大稳定极值区域(MSER)的交通标志检测算法.在检测过程中,为了解决不同天气情况下获取的图像亮度不同的问题,使用多组阈值;针对使用传统的颜色阈值算法得到的交通标志候选区域与颜色相似的背景粘连在一起的现象,提出一种分割算法对其进行准确分割.最后使用支持向量机(SVM)和方向梯度直方图(HOG)对得到的目标区域进行分类.尽管是在复杂的场景下,交通标志的检测率和识别率也较高.Traffic signs recognition technology can be used in driving assistance, automatic drive, and routing maintenance of traffic sign. This technology has a significant research value. However, in the complex outdoor environment, due to the unfavorable factors of variable light condi tion, signs fading, signs inclining and distorting, traffic signs detection and recognition is still a challenging task. Currently,color, shape and local stability are used in the main methods of traffic sign detection. However, these methods have the disadvantages of low precision and less robust ness in the complex environment. To achieve a better detection result, a new method for traffic sign detection is proposed which based on color pair and Maximally Stable Extremal Regions(MSER). In the procedure of detecting traffic signs, a multi threshold method is utilized for the prob lem of different image brightness that obtained in the different weather condition. And a cutting method is also proposed for the candidate regions which are connected with similar background. At last, SVM and HOG are utilized for the classification of the proposed regions and high detec tion rate and recognition rate are obtained in the complex environment.
关 键 词:交通标志检测 颜色对 最大稳定极值区域 多阈值 支持向量机 方向梯度直方图
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145