检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许毅[1] XU Yi(Laiwu Vocational and Technical College,Laiwu 271100,China)
出 处:《兵器材料科学与工程》2018年第6期49-53,共5页Ordnance Material Science and Engineering
基 金:国家自然科学基金(51474072)
摘 要:采用脉冲电沉积方法在A3钢表面制备Ni-TiN纳米镀层,利用扫描电镜、电子分析天平、X射线光电子能谱分析仪等设备对Ni-TiN纳米镀层腐蚀行为进行研究,用BP神经网络模型预测Ni-TiN纳米镀层腐蚀失质量。结果表明:当脉冲频率为500 Hz、TiN粒子的质量浓度为8 g/L和电流密度为4 A/dm2时,Ni-TiN纳米镀层镍晶粒细小、结构精细、致密性较高、耐蚀性较好,镀层中元素Ti和Ni的原子数分数分别为20.1%和51.4%;BP神经网络预测Ni-TiN纳米镀层腐蚀失质量的相对误差较小,最大均方误差(MSE)仅为9.8%。The Ni-TiN nanocrystalline coating was prepared on A3 steel surface by pulse electrodeposition. The corrosion behavior of Ni-TiN nanocrystalline coating was studied by means of scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). And BP neural network model was used to predict the weight loss of Ni-TiN nano coating. The results show that, when the pulse frequency is 8 g/L and the current density is 4 A/dm^2, the Ni-TiN nanocrystalline coating with fine grain, fine structure, high density and good corrosion resistance can be prepared. The atomic fraction of Ti and Ni in the coating are 20.1% and 51.4%, respectively. The relative error Of predicting the corrosion weight loss of Ni-TiN nanocrystalline coating by BP neural network is relatively small, and the maximum mean square error (MSE) is only 9.8%.
关 键 词:BP神经网络 Ni-TiN纳米镀层 腐蚀 预测
分 类 号:TG174.4[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.81.178