检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾新龑 毛文涛[1] 田梅[2] AI Xin-yan;MAO Wen-tao;TIAN Mei(Henan Normal University Computer and Information Engineering School,Xinxiang 453007,Henan Province,China;Xinxiang Medical College Management School,Xinxiang 453003,Henan Province,China)
机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]新乡医学院管理学院,河南新乡453003
出 处:《中华医学图书情报杂志》2018年第7期1-5,共5页Chinese Journal of Medical Library and Information Science
基 金:国家自然科学基金"基于多任务学习的机械结构小损伤检测方法研究"(U1704158);河南省高校科技创新人才资助计划"基于多任务学习的结构振动微损伤识别方法研究"(15HASTIT022)
摘 要:目的:采用机器学习技术分析和预测在线疾病诊疗方案的倾向性。方法:爬取39疾病百科网中与心血管疾病相关的439条症状数据,通过TF-IDF算法提取症状关键词向量,采用支持向量机、决策树、神经网络建立分类模型,预测不同病症倾向西医或中西医结合的治疗方案。结果:对在线疾病信息的文本分析可挖掘疾病的特征,采用机器学习技术可有效预测对应治疗方案的倾向性,预测精度均达90%以上。结论:机器学习技术可揭示疾病症状和治疗方案之间的内在联系,有助于提高在线疾病咨询的效率,提供有针对性的备选治疗方案。Objective To analyze and predict the tendency for online disease diagnosis and treatment plan using machine learning technique. Methods The data of cardiovascular disease-related 439 symptoms were crawled from The 39 Disease Encyclopedia Web. The keyword vector of symptoms was extracted using TF-IDF algorithm. A classification model was established with support vector machine, decision tree and neural network. The different tendencies of disease to Western medicine or combined Western and traditional Chinese medicine were predicted. Results Text analysis of online disease information could mine the characteristics of different diseases. Machine learning technique could effectively predict the tendency to online disease diagnosis and treatment plan with an accuracy 〉90%. Conclusion Machine learning technique can display the relationship between disease symptoms and treatment plan, improve the efficiency of online disease consultation, and provide the candidate treatment plan for different diseases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233