检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程与电子技术》2002年第9期114-117,共4页Systems Engineering and Electronics
摘 要:在Hopfield网络 (HNN)权值训练中采用了传统HNN训练的方法 ,把权值矩阵压缩为一个向量 ,简化了权值训练过程 ,增大了HNN的容量。但在回想阶段HNN产生了大量寄生点 ,相关文献提出了几种寄生点消除的方法 ,但效率低 ,同时会导致样本信息的丢失。利用遗传算法 (GA)进行回想 ,保持了样本信息 ,并利用GA各代多样性 ,大大提高了HNN的效率。通过MATLAB程序仿真证实了这一结论。The method to train the weights of HNN is adoped in this paper. The weight matrix to a vecter is reduced. The procedure of training is simplifies and the HNN's capacity is increased, but in the recall stage, there are many parasite points, Some references introduce some methods to eliminate the parasite points, but their efficiency are low and can lead to elimination of sample's information. We utilize the genetic algorithm to recall the prototype, reduce the elimination of information. Because of the variety of GA, the efficiency of HNN is increased. Through Matlab simulation, our conclusion has been verified.
关 键 词:遗传算法 HNN 寄生点 样本原形 联想记忆 HOPFIELD神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222