基于目标轮廓与骨架特征的棋子识别算法  被引量:3

Chess piece recognition algorithm based on target contour and skeleton features

在线阅读下载全文

作  者:郭晓峰 王耀南 周显恩 钱珊珊 

机构地区:[1]湖南大学电气与信息工程学院机器人视觉感知与控制技术国家工程实验室

出  处:《电子测量与仪器学报》2018年第9期142-149,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家自然科学基金(61733004,61573134,61433016);国家科技支撑计划(2015BAF13B00)资助项目

摘  要:针对中国象棋机器人系统中棋子识别问题,提出了一种基于目标轮廓与骨架特征的棋子识别算法。首先,采用Hough圆检测进行棋子粗定位及预处理。随后,对单幅棋子图像进行形态学处理,提取最大面积轮廓,并利用其最小外接圆进行定位修正。最后,对定位修正后的棋子图像提取其外轮廓与内骨架,计算其Hu矩作为特征向量,并利用支持向量机(SVM)进行识别。以直径为25 mm的棋子为测试对象,利用象棋机器人采集图像进行测试,结果表明,棋子平均识别率在99%以上,平均识别时间为20 ms,完全满足现有象棋机器人需求。In view of the problem of chess pieces recognition in Chinese chess robot system,a chess pieces recognition algorithm based on the feature of the target contour and the skeleton is proposed. Firstly,the Hough circle detection is used for the rough location and preprocessing of the chessmen. Then,the single piece image morphological processing,extract the maximum area contour,and position correction using the minimum circumscribed circle. Finally,we extract the contour and skeleton of the corrected chessman image,calculate its Hu moments as the eigenvectors,and send them into the trained support vector machine( SVM) multiple classifiers. Using the chess robot developed by us,taking the diameter of 25 mm pieces as the test object,the images were collected and tested. The result shows that the average recognition rate of the chess pieces is above 99%,and the average recognition time is 20 ms,which fully satisfies the needs of the existing chess robots.

关 键 词:机器视觉 最小外接圆定位 轮廓与骨架 HU矩 支持向量机 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP242[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象