检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海南软件职业技术学院电子工程系,海南琼海571400
出 处:《电子制作》2015年第2Z期20-21,共2页Practical Electronics
基 金:海南省自然科学基金项目(611127)
摘 要:为了诊断模拟电路中的故障,在粒子群算法和BP神经网络的基础上,本文提出了一种动态加速常数协同惯性权重的粒子群算法和动量及自适应学习率的BP算法的混合算法训练神经网络权值,使得动态加速常数协同惯性权重的粒子群算法与动量及自适应学习率的BP算法相互补充,提高网络性能,克服了传统BP算法收敛速度不快的缺点。通过对容差模拟电路硬故障的诊断,表明该算法提高了网络的学习速度,能够实现对容差模拟电路硬故障的诊断。
关 键 词:粒子群神经网络 动态加速常数协同惯性权重 动量及自适应学习率 故障诊断
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229