检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖益民[1]
机构地区:[1]武汉大学
出 处:《数学年刊(A辑)》1991年第5期612-618,共7页Chinese Annals of Mathematics
摘 要:设X(t)(t∈R^N)是d维分式Browa运动,本文研究X(t)的k重点集的Hausdorff维数。证明了:若P_1,…,P_k是R^N中内部不空的紧集,P=multiply from i=1 to k P_i, L_k(P)={x∈R^d|存在(t_1,…,t_k)∈P,使X(t_1)=…=X(t_k)=x},则当N≤ad,Nk>(k-1)ad时,P{dim L_k(P)=Nk/a-(k-1)d}>0,当N>ad时,P{dim L_k(P)=d}>0。当N≤ad时,对R^N\{0}中互不相交的紧集E_1,…,E_k得到了dim(X(E_1)∩…∩X(E_k))的一个上界和dim(X(E_1)∩X(E_2))的下界,从而当k=2时,证明了Testard猜想。
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.16