LLE重构和SVD分解的地震信号降噪方法  被引量:4

Noise suppression method for seismic signals based on LLE reconstruction and SVD decomposition

在线阅读下载全文

作  者:崔业勤[1] 高建国[1] 丁国超[2] CUI Yeqin;GAO Jianguo;DING Guochao(College of Mathematics and Information Science, Langfang Normal University, Langfang, Hebei 065000, China;College of Information Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China)

机构地区:[1]廊坊师范学院数学与信息科学学院,河北廊坊065000 [2]黑龙江八一农垦大学信息技术学院,黑龙江大庆163319

出  处:《计算机工程与应用》2016年第15期266-270,共5页Computer Engineering and Applications

基  金:黑龙江省自然科学基金(No.F200804);黑龙江省教育厅科技项目(No.11531056)

摘  要:针对现有地震信号降噪方法处理地震剖面的弯曲同相轴效果不佳,提出联合局部线性嵌入(LLE)和奇异值分解(SVD)方法的地震信号降噪技术。利用LLE的重构思想,对地震数据采样点用其近邻进行重构,实现非线性模式的弯曲同相轴的线性化处理,并去除一定程度的随机噪声;根据地震资料有效信号具有良好相关性的特性,采用SVD分解对LLE重构后的地震数据进行有效信号和噪声分离,剔除不相干的噪声,最终实现地震数据的随机噪声压制。在正演模型和真实地震资料上进行了实验,实验结果表明:与传统SVD方法相比,提出的方法很好地消除了随机噪声,有效信号基本上无丢失。Existing noise reduction methods for seismic signals can not achieve a good result for the curve events of seismicprofile. This paper proposes a noise suppression method for seismic signals based on Locally Linear Embedding(LLE)reconstruction and SVD decomposition. First, the method uses the reconstruction of locally linear embedding toreconstruct each sample of seismic data by its neighborhoods, which achieves the linearization of the curve events of nonlineardata. This removes the random noise in certain extent. Then, it separates the effective signals from the data containingthe noise according to a good coherence of effective frequency signals for seismic data of LLE reconstruction, andgets rid of non-relevant noise. It ultimately achieves random noise suppression of seismic data. Finally, the experimentsare conducted on forward model and real seismic data. The proposed method effectively removes random noise comparedwith traditional SVD method, and it does not lose the effective signals mainly.

关 键 词:局部线性嵌入 奇异值分解 重构 分解 地震信号 去噪 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象