基于记忆曲线的数据密集型动态用户行为建模  被引量:1

Data Intensive Modeling of Dynamic User Behaviors Based on Forgetting Curve

在线阅读下载全文

作  者:尹子都 岳昆[1] 武浩[1] 付晓东[2] 刘惟一[1] 

机构地区:[1]云南大学信息学院,昆明650504 [2]昆明理工大学信息工程与自动化学院,昆明650504

出  处:《计算机科学与探索》2016年第10期1376-1386,共11页Journal of Frontiers of Computer Science and Technology

基  金:国家自然科学基金,Nos.61472345,61163003,61462056,61562090;云南省应用基础研究计划,Nos.2014FA023,2014FA028;云南省中青年学术和技术带头人后备人才培养计划.No.2012HB004;云南大学创新团队培育计划,No.XT412011;云南大学青年英才培养计划,No.XT412003~~

摘  要:分析用户行为的历史数据,使用特定方法建立用户的偏好模型,是目前研究的热点和关键。考虑了数据产生的时序特征,以及具有时间特征的变量在用户行为模型中的影响,以心理学中的记忆曲线模型为依据,从用户的行为数据出发,给出了用户偏好的表示,并为用户的每个偏好建立一个记忆曲线模型,实时地表示用户的偏好。针对海量的用户行为数据,提出了基于MapReduce的模型参数增量更新算法和动态用户偏好计算方法,从而使得模型能反映动态变化的用户偏好。建立在真实数据上的实验结果表明,提出的模型和算法具有高效性、正确性和可用性。Analyzing historical user behavior data and establishing user preference model by some certain method is the critical subject with great attention. This paper considers the time series characteristics of data generation and the influence of the variables with temporal characteristics on user behavior models. Based on the forgetting curve in psychology,this paper starts from user behavior data and gives the representation of user preferences. Thus, a forgetting curve model can be established for each preference and user preferences can be represented by real time manner.Aiming at massive user behavior data, this paper proposes the MapReduce- based algorithms for the incremental update of model parameters and the computation of dynamic user preferences. Thus, inherently dynamic user preferences can be reflected by the constructed user behavior model. The experimental results conducted on real data show that the proposed model and algorithms are efficient, correct and applicable.

关 键 词:动态用户行为模型 用户偏好 记忆曲线 增量更新 MAPREDUCE 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象