应用RBF神经网络的体绘制传递函数设计方法  被引量:1

Design of multi-dimensional transfer function for volume rendering based on RBF neural network

在线阅读下载全文

作  者:周慧[1] 张尤赛[1] 李垣江[1] ZHOU Hui;ZHANG Yousai;LI Yuanjiang(Department of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212000, China)

机构地区:[1]江苏科技大学电子信息学院,江苏镇江212000

出  处:《计算机工程与应用》2016年第22期180-184,共5页Computer Engineering and Applications

摘  要:提出一种基于RBF神经网络的体绘制多维传递函数设计方法,利用直观的交互界面,通过画笔获得感兴趣体素的特征信息作为训练样本对RBF神经网络进行训练,使用训练后的RBF神经网络实现全部体素的分类识别,对不同的分类结果赋予不同的光学参数进行显示,自动完成传递函数的设计。实验结果表明,所设计的交互界面能直观方便地定义感兴趣的对象,大幅提高人机交互的效率;RBF神经网络的自主学习能力能够避免传递函数设计的盲目性,增强感兴趣区域的绘制效果,实现传递函数设计的自动化和智能化。This paper proposes a novel method of multi-dimensional transfer function design for volume rendering basedon RBF neural network. By sampling the characteristic information of interested voxels on the intuitional interactive interfacewith a brush, this method trains RBF neural network with these training samples. Trained RBF neural network achievesclassification and recognition to all the voxels, and different optical parameters are allocated to all the different classificationresults to indicate, which finishes the design of a transfer function automatically. Experiment results have shown that theinteractive interface can define the interested object conveniently and improve the efficiency of human-computer interactiongreatly. Besides, the self-learning ability of RBF neural network can avoid the blindness of transfer function designs, enhancethe rendering effect of interested regions and achieve the automation and intellectualization of transfer function designs.

关 键 词:体绘制 交互界面 传递函数 RBF神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象