检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪瑞[1,2] WANG Rui(School of Economics & Management/Fuzhou University, Fuzhou 350106, China;College of Business Administration/Fujian Jiangxia University, Fuzhou 350108, China)
机构地区:[1]福州大学经济与管理学院,福建福州350106 [2]福建江夏学院工商管理学院,福建福州350108
出 处:《山东农业大学学报(自然科学版)》2016年第6期953-956,共4页Journal of Shandong Agricultural University:Natural Science Edition
摘 要:当前房地产市场飞速发展,房地产评估行业缺乏科学的评估方法,致使评估质量难以保证。本文通过运用BP神经网络方法构建出房地产评估价格与相关影响因素之间的映射关系,提出一种房地产评估预测模型,该模型通过优化BPNN的权值和阈值来提高BPNN的收敛速度,可解决该算法陷入局部极值点的问题,为提高房地产估价的准确性和有效性提供了新思路。With the rapid development of the real estate market and the lack of scientific evaluation methods in the real estate appraisal industry, it is difficult to guarantee the quality of the evaluation. In this paper, by using BP neural network method to construct the mapping relationship between the factors of real estate prices and related effects, put forward a kind of real estate evaluation model. It can improve the convergence speed of BPNN by optimizing the weights and threshold, which can solve the local minima problem, and provides a new way to improve the accuracy and effectiveness of the real estate appraisal.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249