检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘锦怡[1] 张乐[1,2] 胡海波[1,2] 朱贺[3] LIU Jinyi;ZHANG Le;HU Haibo;ZU He(School of Software Engineering, Chongqing University, Chongqing 401331, China;Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing 400044,China;School of Telecommunication Engineering, Chongqing University, Chongqing 400044, China)
机构地区:[1]重庆大学软件学院,重庆401331 [2]信息物理社会-可信服务计算教育部重点实验室,重庆400044 [3]重庆大学通信工程学院,重庆400044
出 处:《计算机工程与应用》2017年第4期176-183,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.61103114)
摘 要:为了降低可穿戴传感器在传感器移位时对动作识别率的影响,对可穿戴传感器的动作识别进行了研究。采用高精度传感器采集不同部位的输出信号,根据运动的周期特点对输出信号进行去噪和快速傅里叶变换,将其转化为频域信号。再使用主成分分析法提取综合指标,并对自组织神经网络进行训练,实现动作识别。最差情况下识别准确率可达到92.0%,较好情况下甚至可达到97.5%,传感器移位情况下的识别率甚至更高。Human daily activity recognition using mobile personal sensing technology plays a central role in the field of pervasive healthcare. In this paper, a novel human activity recognition framework is presented to reduce the impact of sensors displacement. It utilizes high-precision sensor to capture signal. According to periodic features of human movement,the corresponding frequency domain is got by Fast Fourier Transform. The principal components analysis is used to extract composite indicator. After extend process the input data, a self-organizing neural network models is built for gesture recognition.Experimental results demonstrate the effectiveness of the scheme, and in ideal conditionsthe accuracy of certain relationship can get 97.5%.
关 键 词:快速傅里叶变换 自组织神经网络 主成分分析 动作识别
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145