强鲁棒性的可穿戴传感器的人体动作识别方法  被引量:3

Strong robustness human activity recognition based on wearable sensors

在线阅读下载全文

作  者:刘锦怡[1] 张乐[1,2] 胡海波[1,2] 朱贺[3] LIU Jinyi;ZHANG Le;HU Haibo;ZU He(School of Software Engineering, Chongqing University, Chongqing 401331, China;Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education, Chongqing 400044,China;School of Telecommunication Engineering, Chongqing University, Chongqing 400044, China)

机构地区:[1]重庆大学软件学院,重庆401331 [2]信息物理社会-可信服务计算教育部重点实验室,重庆400044 [3]重庆大学通信工程学院,重庆400044

出  处:《计算机工程与应用》2017年第4期176-183,共8页Computer Engineering and Applications

基  金:国家自然科学基金(No.61103114)

摘  要:为了降低可穿戴传感器在传感器移位时对动作识别率的影响,对可穿戴传感器的动作识别进行了研究。采用高精度传感器采集不同部位的输出信号,根据运动的周期特点对输出信号进行去噪和快速傅里叶变换,将其转化为频域信号。再使用主成分分析法提取综合指标,并对自组织神经网络进行训练,实现动作识别。最差情况下识别准确率可达到92.0%,较好情况下甚至可达到97.5%,传感器移位情况下的识别率甚至更高。Human daily activity recognition using mobile personal sensing technology plays a central role in the field of pervasive healthcare. In this paper, a novel human activity recognition framework is presented to reduce the impact of sensors displacement. It utilizes high-precision sensor to capture signal. According to periodic features of human movement,the corresponding frequency domain is got by Fast Fourier Transform. The principal components analysis is used to extract composite indicator. After extend process the input data, a self-organizing neural network models is built for gesture recognition.Experimental results demonstrate the effectiveness of the scheme, and in ideal conditionsthe accuracy of certain relationship can get 97.5%.

关 键 词:快速傅里叶变换 自组织神经网络 主成分分析 动作识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象