检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:褚鹏宇[1] 刘澜[1] CHU Pengyu;LIU Lan(School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China)
机构地区:[1]西南交通大学交通运输与物流学院,成都610031
出 处:《计算机工程与应用》2017年第4期228-232,262,共6页Computer Engineering and Applications
摘 要:科学、准确的铁路客运量短期预测是提高铁路客运系统竞争力与服务水平的关键。针对铁路短期客运量的特点,提出了一种基于灰色理论的变权重组合预测模型。为了获取不同模型在不同时刻的权重系数,采用广义回归神经网络对动态权重进行跟踪和预测。以2014年1~12月份的铁路客运量为研究对象,分别建立均值GM(1,1)模型、离散GM(1,1)模型、灰色Verhulst模型以及变权重组合预测模型。实例分析的结果表明,三个单一模型的平均相对误差分别为17.14%、16.99%和12.94%,而变权重组合模型为7.01%,变权重组合预测模型的预测精度明显高于单一模型。Scientific and accurate short-term forecast of railway passenger traffic is the key to improve the competitiveness and service level of the railway passenger transport system. According to the characteristics of short-term railway passenger traffic, a variable weight combination forecasting model based on grey theory is proposed. In order to obtain the weight coefficient of different models at different times, the dynamic weights are tracked and predicted by using the generalized regression neural network. Taking the railway passenger traffic volume of 1~12 months in 2014 as the research object, the even grey model, the discrete grey model, the grey Verhulst model and the variable weight combination forecasting model are established respectively. The results of case analysis show that the average relative error of the three single model are 17.14%, 12.94% and 16.99% respectively, while the variable weight combination model is 7.01%, The forecasting accuracy of the variable weight combination forecasting model is obviously higher than the single model.
关 键 词:铁路客运量 变权重 灰色理论 广义回归神经网络 组合预测
分 类 号:U293[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117