检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雯[1] 王小鹏[1] 李志强[1] 渠燕红 ZHANG Wen;WANG Xiaopeng;LI Zhiqiang;QU Yanhong(School of Electronic & Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070
出 处:《计算机工程与应用》2017年第5期176-180,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61261029);金川公司预研基金项目(No.JCYY2013009)
摘 要:C-V模型可有效对脑肿瘤等医学图像进行分割,但存在对初始轮廓位置敏感及重新初始化耗时的问题,为此,提出了一种分水岭优化的C-V模型脑肿瘤分割方法。首先引入标记函数,通过强制最小技术改善传统分水岭变换的过分割现象,得到粗分割结果,然后在粗分割基础上确定C-V模型初始轮廓位置,最后采用无需重新初始化的C-V模型进行细分割,得到较精确的脑肿瘤分割结果。实例结果表明,经过分水岭优化后的C-V模型能够对常见脑肿瘤图像进行有效分割,尤其是能够将与组织粘连的肿瘤分割出来。C-V model is an effective segmentation method for medical brain tumor images. Aimed at its sensitivity to the initial contour position and time-consuming re-initialization, a new method for C-V model optimized by watershed transformation is proposed. First, the marker function is introduced, with mandatory minimum technology, to deal with theover-segmentation of traditional watershed transformation and get the coarse result. Then, the initial contour position ofC-V model is confirmed based on the coarse segmentation. Finally, the C-V model without re-initialization is used for fine segmentation, obtaining the accurate segmentation. The experimental results show that the proposed method can effectively segment the common brain tumor, but also for the tumor which is attached to tissues.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222