检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵涛[1] 于师建[1] ZHAO Tao;YU Shijian(College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
机构地区:[1]山东科技大学矿业与安全工程学院,山东青岛266590
出 处:《煤田地质与勘探》2017年第2期147-151,共5页Coal Geology & Exploration
基 金:山东省自然科学基金项目(ZR2011DM014);国家自然科学基金项目(51274135)~~
摘 要:高密度电法技术在煤矿地质灾害勘探中发挥着重要的作用。近年来,以BP(Backpropagation)神经网络为代表的一类非线性反演方法被广泛运用到高密度电法的反演中。针对BP神经网络方法在高密度电法反演中存在的易陷入局部极小、收敛缓慢、反演精度差等问题,将BP神经网络算法与遗传算法(Genetic Algorithm,简称GA算法)联合演算,实现高密度电法的二维非线性反演。通过典型地电模型对该方法进行验证,结果表明遗传算法能有效优化BP神经网络的权值和阈值,提高了算法的全局寻优性。High density resistivity method has played an important role in geological disaster exploration in mining industry.In recent years some non-linear inversion methods represented by BP neural network have been widely used in the two-dimensional inversion of high density resistivity method.Aiming at the shortcomings of BP neural network such as being easy to fall into local minimum,slow convergency and poor inversion accuracy,the proposed method tried to combine the genetic algorithm and BP neural network method to achieve the two-dimensional inversion of high density resistivity method.The results of the classical electric model indicated that the genetic algorithm method can optimize the weights and bias of the BP neural network effectively and improve the performance of global optimization.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173