检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓佳欣[1] 苗毅[1] 朱江[2] DENG Jia-xin;MIAO Yi;ZHU Jiang(China Flight Test Research Institute Avionics Station,Xi忆an 710089,China;National Laboratory of Radar Signal Processing,Xidian University,Xi'an 710071,China)
机构地区:[1]中国飞行试验研究院航电所,西安710089 [2]西安电子科技大学雷达信号处理国家重点实验室,西安710071
出 处:《价值工程》2017年第18期243-245,共3页Value Engineering
摘 要:传统信号处理的采样率必须满足香农定理。随着携带信息量和系统分辨率的提高,系统带宽不断增大,这对系统传输和存储等带来巨大压力。压缩感知理论利用信号内在的稀疏性,以低于奈奎斯特采样率对其进行采样,显著降低信号处理的成本。文章介绍了压缩感知方法的基本理论和几类典型稀疏重构方法,并通过仿真实验分析了它们的性能。最后结合几个典型实例,概述了采用压缩感知方法解决雷达信号处理领域某些特定工程问题的优势。Conventional signal processing approaches must follow Shannon's celebrated theorem.As the promotion of information andresolution,the band of system will also increase.The transmission and storage of system is greatly challenged.While compressive sensingtheory can sample signal at the rate below Nyquist Sampling frequency to lessen the system cost in signal processing.This paper introducesthe basic theory of compressive sensing and several typical sparse recovery methods.The performance of different methods was illustratedthrough simulation.Via several typical applications in radar,we showed the advantage in dealing with some special radar problem withcompressive sensing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15