检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏玉果[1] 戴红霞[1] 顾明亮[2] XIA Yuguo;DAI Hongxia;GU Mingliang(School of Electronic Information Engineering, Jiangsu Vocational College of Information Technology, Wuxi, Jiangsu 214153, China;School of Linguistic Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China)
机构地区:[1]江苏信息职业技术学院电子信息工程学院,江苏无锡214153 [2]江苏师范大学语言科学学院,江苏徐州221116
出 处:《计算机工程与应用》2017年第15期149-154,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61040053)
摘 要:为了解决方言辨识系统中训练样本冗余的问题,提出了一种融合多样性测度的汉语方言主动辨识方法。利用SVM分类器选取不确定性的样本。根据样本间分布情况的测度算法,选取出兼具多样性的训练样本,经过多次迭代将这些最具区别性的样本组成训练集。将此训练集重新输入到SVM进行分类辨识。实验结果表明,该方法能有效克服选取样本的冗余,与传统的主动学习方法相比,在同等识别率的情况下,人工标注样本的数量减少了50%。In order to solve the problem of the redundant training samples in dialect identification system,an approach forChinese dialect identification fusing diversity measure is proposed.Firstly,the uncertain samples are chosen by SVMclassifier,then according to the distribution of these samples,the uncertain samples with diversity are selected and thenew training set including these distinctive samples is constructed after several iterations.Finally,SVM is reused to makethe decision.Experimental results indicate that,compared with the traditional active method,the proposed approacheffectively overcomes the redundancy of the samples and the number of manually annotated samples reduces50%underthe same condition of recognition accuracy.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49