检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程子光[1] 杨兆民[1] 周潇[1] 尹康银[1] CHENG Ziguang;YANG Zhaomin;ZHOU Xiao;YIN Kangyin(Air Force EarlyWarning Academy,Wuhan 430019, China)
机构地区:[1]空军预警学院,武汉430019
出 处:《空军预警学院学报》2017年第4期275-279,共5页Journal of Air Force Early Warning Academy
基 金:空军军事理论研究资助项目(17KJ3C1-0089R)
摘 要:针对传统蚁群(ACO)算法在求解Ad Hoc网络"点覆盖"优化部署问题时不能同时满足精度和速度要求以及求解规模相对较小的问题,提出了一种改进蚁群算法.该改进算法是将栅格化区域分为内、外两层,只依据外层大栅格数量构建信息素矩阵,缩小矩阵阶数,从而提高算法演化速度;蚂蚁的移动过程包括粗移动和细移动.仿真结果表明,该分层蚁群算法能用于求解Ad Hoc网络"区域覆盖"优化部署问题,提高了网络优化部署的时效性.The traditional ant colony optimization(ACO)when used to solve the problem of point coverage optimal deployment of Ad Hoc network can not meet the demand for speed and accuracy simultaneously,and its solution scale is relatively small.Aiming at these problems this paper presents an improved ACO algorithm.This algorithm divides the grid area into inner and outer sphere,and establishes a pheromone matrix only according to the outer sphere so as to reduce the number of matrices and improve the solution speed.The ant movement is changed into rough move and precise move.Simulation results show that the proposed algorithm can be used to solve the problem of regional coverage optimal deployment of Ad Hoc network and improve the efficiency of network optimal deployment.
关 键 词:改进蚁群算法 ADHOC网络 优化部署 贪婪思想
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.77