检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈勇斌 李远清[1] CHEN Yong-bin;LI Yuan-qing(School of Automation Science and Engineering, South China University of Technology, Guangzhou Guangdong 510641, China)
机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510641
出 处:《控制理论与应用》2017年第6期843-848,共6页Control Theory & Applications
基 金:Supported by National Natural Science Foundation of China(91120305);Guangdong Natural Science Foundation(2014A030312005)
摘 要:在脑成像数据分析中,基于稀疏表示的模式定位算法在群组水平分析中具有非常优秀的性能,但在单个数据集的情况下结果还不尽如人意.为此,文中在先前研究的基础上提出了一种改进算法,通过基于原始数据集生成多个派生数据集的方法,来改善算法在单个数据集分析中的不足.仿真结果表明改进后算法在性能上有显著的提高.文章随后将该改进算法应用于帕金森病异常功能连接模式定位分析之中,得到广泛分布于全脑的与该疾病相关的269个异常功能连接,由此对算法的有效性进行了验证,并可能有助于加强对与该疾病相关的病理生理机制的了解.In the analysis of brain imaging data,the sparse representation-based pattern localization algorithm has a very good performance at the group level data analysis.But at the single level,it's performance is still disappointed.Therefore,in order to compensate for this deficiency,an improved algorithm based on previous research was proposed in this study.By generating multiple derived data sets from the original data and then performing pattern localization procedure,the improved algorithm has better performance compared to the original in simulation.Subsequently,the improved algorithm was applied to the analysis of localizing all abnormal brain functional connections in Parkinson's disease.269abnormal connections were obtained and they were widely distributed throughout the entire brain.Thus,the effectiveness of the algorithm was verified and our findings may have the potential to advance the understanding of the neural mechanism of this disease.
分 类 号:R742.5[医药卫生—神经病学与精神病学] TP391.41[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.174