检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李隽[1] 王伟[2] LI Jun;WANG Wei(Neijiang Vocational and Technical College,Neijiang 611002,China;Chengdu College,University of Electronic Science and Technology of China,Chengdu 610000,China)
机构地区:[1]内江职业技术学院,四川内江611002 [2]电子科技大学成都学院,四川成都610000
出 处:《现代电子技术》2017年第20期111-113,共3页Modern Electronics Technique
基 金:国家自然科学基金项目(61006027)
摘 要:针对传统的目标识别方法存在易陷入局部最佳值和识别精度低的问题。提出基于遗传算法优化神经网络的图像目标识别方法,通过灰度共生矩阵运算出图像的纹理特征值,并融合像素灰度值构成分类图像的特征矢量,将特征矢量输入到神经网络中实施训练。神经网络先采用遗传算法获取最佳检索范围,再通过高阶神经网络实施寻优运算,获取最佳的图像目标识别结果。实验结果说明,所提方法在图像目标识别精度和效率方面具有较高的优越性。For the traditional target recognition methods are easy to fall into local optimum value and have low recognitionaccuracy,an image target recognition method based on genetic algorithm optimizing neural network is proposed.The texture ei?genvalues of the image are calculated by means of gray?level co?occurrence matrix(GLCM),and fused with the pixel grey?levelvalue to form the feature vector of the classification image.The feature vector is input into neural network for training.The genet?ic algorithm adopted in neural network is used to get the best search range,and then the optimization operation is performed inhigh?order neural network to get the best image target recognition results.The experimental results show that the proposed meth?od has high superiority in the aspects of image target recognition accuracy and efficiency.
分 类 号:TN711-34[电子电信—电路与系统] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.59.149