P2P网贷个人信用风险评估模型研究——基于混合果蝇神经网络的方法  被引量:11

在线阅读下载全文

作  者:吴斌[1] 叶菁菁[1] 董敏[1] 

机构地区:[1]南京工业大学经济与管理学院

出  处:《会计之友》2017年第21期32-35,共4页Friends of Accounting

基  金:国家自然科学基金面上项目(71371097);南京工业大学科研项目(ZKJ201531)

摘  要:P2P网贷在爆发式增长的同时,也面临着重大的信用风险,个人信用评估是降低信用风险的重要方法。根据P2P网贷自身的特点,对影响P2P网贷借款人信用风险的因素进行分析,引入互联网信息领域特有的风险因素,建立了P2P网贷个人信用风险评估指标体系。基于该指标体系,考虑P2P网贷中"软信息"较多、"硬信息"缺失的特点,提出了基于BP神经网络的信用评估模型。为了提高BP神经网络的收敛速度和精度,将改进的果蝇优化算法作为BP神经网络的学习算法,对神经网络的权重进行训练。通过"人人贷"平台收集的样本数据进行实验验证。结果表明:改进果蝇神经网络评估模型比传统BP神经网络模型有更强的学习能力和预测能力,是P2P网贷个人信用风险评估的有效方法。

关 键 词:P2P网贷 信用风险评估 BP神经网络 果蝇优化算法 

分 类 号:F830[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象