基于多波段深度神经网络的舰船目标识别  被引量:26

Ship recognition based on multi-band deep neural network

在线阅读下载全文

作  者:刘峰[1] 沈同圣[2] 马新星[1] 张健 LIU Feng;SHEN Tong-sheng;MA Xin-xing;ZHANG Jian(Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;Department of National Defense Science and Technology Information Center, Beijing 100142, China;Unit No.91206, Qingdao 266108, China)

机构地区:[1]海军航空工程学院控制工程系 [2]中国国防科技信息中心 [3]91206部队

出  处:《光学精密工程》2017年第11期2939-2946,共8页Optics and Precision Engineering

基  金:国家自然科学基金资助项目(No.61303192)

摘  要:考虑多波段图像的融合识别可以扩展识别系统的应用范围,本文探索并设计了一种基于卷积神经网络的融合识别方法。该方法以AlexNet网络模型为基础,同时对可见光、中波红外和长波红外三波段图像进行特征提取;然后,利用互信息的方法对串联的三波段特征向量进行特征选择,依据重要性排序的方式选定固定长度的特征向量;最后,依据特征提取层级的不同,分别以早期融合、中期融合和后期融合3种融合方式来验证算法的有效性。采用自建的三波段舰船图像数据库进行了模型的训练和测试,共包含6类目标,5 000余张图像。实验结果显示,采用的3种融合识别方法中,中间层融合的识别准确率最高,达到84.5%,比早期融合和后期融合分别高5%和7%左右。另外,在本文的应用场景下,无论何种融合方式,其融合识别的准确率均明显高于其他单波段识别的准确率。The fusion recognition of multi-band images can extend the application range of recognition systems.A fusion method based on convolutional neural networks(CNN)was explored and designed in this paper.Based on the AlexNet network model,it was extracted that the ship target features of three wave band images concurrently in visible light,Middle Wave Infrared(MWIR)and Long Wave Infrared(LWIR)bands.Then,it performed the feature selection for concatenated three band eigenvectors by using the mutual information method and determines the dimensions of fusion eigenvectors according to sorting the importance of concatenated feature eigenvectors.Finally,three fusion methods named as Early fusion,Middle fusion and Late fusion were used to verify respectively the effectiveness of the proposed algorithm according to the features extracted from different levels.An available ship target dataset in three bands containing6categories of targets and more than5000images was established for our experimental verification.The results show that the recognition rate from Middle fusion reaches84.5%.Compared with Early Fusion and Late Fusion,it increases by8%and12%.Moreover,the recognition rates of all three fusion methods have been improve significantly as compared to that of the single band recognitions at the same application scene.

关 键 词:目标识别 舰船识别 特征融合 卷积神经网络 多波段图像 特征选择 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象