检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邢文凯 高雪霞[2] 侯小毛 翟萍[4] XING Wen-kai;GAO Xue-xia;HOU Xiao-mao;ZHAI Ping(School of Electronics and Information Engineering,Sias International University,Zhengzhou University,Xinzheng451150,China;School of Computer Science and Technology,Wuhan University of Technology,Wuhan430070,China;School of Software,Central South University,Changsha430075,China;School of Information Engineering, Zhengzhou University,Zhengzhou450001,China)
机构地区:[1]郑州大学西亚斯国际学院计算机科学系,新郑451150 [2]武汉理工大学计算机科学与技术学院,武汉430070 [3]中南大学软件学院,长沙430075 [4]郑州大学信息工程学院,郑州450001
出 处:《计算机科学》2017年第12期75-79,共5页Computer Science
基 金:河南省科学技术厅项目:云计算资源调度优化技术研究(132300410445);河南省科技基于视频图像子空间维数约简的目标跟踪方法研究(172102210109)资助
摘 要:在保证云计算环境的高计算性能和较优服务质量的前提下,系统能效优化成为推广云计算所要重点解决的问题。为了适应多负载和多任务的云计算任务环境,设计了一种模糊解耦能效优化方案。首先进行输入输出及中间变量参数的设定;然后建立模糊神经网络(Fuzzy Neural Network,FNN)模型及解耦规则,对影响能效指标的关键参数进行提取和优化,该方法能快速找到影响能效的关键因素并对其进行评估,从而实现稳定可控的能效优化;最后加入模糊解耦的参数扰动自调整设计,对解耦运算遇到的参数扰动进行自适应调整,提高系统的鲁棒性。Under the premise of ensuring the high computing performance and excellent service quality of cloud computing environment,the optimization of system energy consumption has become the key problem for cloud computing's wide promotion.In order to adapt to the multi-load and multi-task cloud computing environment,a fuzzy decoupling energy efficiency optimization scheme was designed.Firstly,the input,output and intermediate variable parameters were set.Then FNN model and decoupling rules were established,key parameters for affecting the energy efficiency were extracted and optimized.This method can find and evaluate the key factors which affects the energy efficiency quickly,thus achieving stable and controllable energy efficiency optimization.Finally,the parameter disturbance self adjustment design was added,and fuzzy decoupling is adopted to adjust the parameter disturbance of the decoupling operation to improvethe robustness of the systern.
关 键 词:云计算 模糊解耦 能效优化 隶属度 模糊神经网络模型 鲁棒性
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4