检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏勇[1] 王龙飞 Xia Yong;Wang Longfei(School of Mathematics and Systems Science,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学数学与系统科学学院,北京100191
出 处:《河南师范大学学报(自然科学版)》2018年第1期9-15,共7页Journal of Henan Normal University(Natural Science Edition)
基 金:国家自然科学基金(11571029;11471325;11771056)
摘 要:对线性两比式和这一非凸NP-困难的优化问题提出新的全局优化算法.首先把原问题等价地转化为一维参数优化问题.设计了巧妙的下界估计方法,在此基础上提出相应的分支定界算法,该算法最坏情况下可需要O(1/ε)迭代步以求得ε-近似全局最优解.数值结果表明,提出的新算法优于商业软件包BARON.此外,针对线性两比式和问题的一个具有隐凸性(等价于一个二阶锥规划)的应用特例,分支定界算法比基于CVX平台调用SDPT3求解相应的二阶锥规划等价模型效率更高.We propose a new global optimization algorithm for minimizing the sum of two linear ratios over a polytope(P),which is NP-hard.We first reformulate(P)as a univariate minimization problem.Based on a newly developed lower bounding approach,we propose an efficient branch-and-bound algorithm,which can find a globalε-approximation solution in at most O(1/ε)iterations.Numerical results show that our new algorithm highly outperforms the software BARON.Moreover,for a special case of(P)which has a second order cone programming reformulation(SOCP),our branch and bound algorithm even works much faster than calling SDPT3for solving(SOCP).
关 键 词:线性比式和 线性规划 分支定界 对偶 二阶锥规划
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49