检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何嘉琳 乔春燕 李冬冬[1] 张海红[1] 邓鸿 单启梅 高坤 马瑞 HE Jialin;QIAO Chunyan;LI Dongdong;ZHANG Haihong;DENG Hong;SHAN Qimei;GAO Kun;MA Rui(School of Agriculture, Ningxia University, Yinchuan 750021, China)
出 处:《食品科学》2018年第6期194-199,共6页Food Science
基 金:国家自然科学基金地区科学基金项目(31160346);大学生创新创业训练计划项目(201610749020);宁夏回族自治区"十三五"优势特色学科建设项目
摘 要:为探究基于高光谱成像技术预测灵武长枣VC含量的可行性并寻找最佳预测模型。采集100个长枣样本在波长400~1 000 nm处的高光谱图像,对光谱数据进行预处理;应用遗传算法(genetic algorithm,GA)、连续投影算法(successive projection algorithm,SPA)和竞争性正自适应加权(competitive adaptive reweighted sampling,CARS)算法对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘(partial least squares regression,PLS)和最小二乘支持向量机(least squares support vector machine,LSSVM)VC含量预测模型。结果表明,采用标准正态变换预处理算法效果最优,其PLS模型的交叉验证相关系数为0.839 5,交叉验证均方根误差为16.248 2;利用GA、SPA和CARS从全光谱的125个波长中分别选取出12、5个和26个特征波长;基于CARS建立的PLS模型效果最优,其Rc、Rp、校正均方根误差、预测均方根误差分别为0.896 2、0.889 2、10.746 2%、12.145 3%。研究结果表明基于高光谱成像技术对灵武长枣VC含量的无损检测是可行的。This study aimed to explore the feasibility of predicting the vitamin C(VC)content in“Lingwu Changzao”jujubes using hyperspectral imaging and to find the best prediction model.Hyperspectral images of100jujube samples were collected in the wavelength range of400to1000nm.Genetic algorithm(GA),successive projection algorithm(SPA)and competitive adaptive reweighted sampling(CARS)algorithm were used to extract the characteristic wavelengths from the original spectral data.Partial least squares(PLS)and least squares support vector machine(LSSVM)were separately used to establish VC prediction models based on the full and characteristic spectra.The results showed that standard normal variate(SNV)transformation was the best preprocessing approach.The cross validation correlation coefficient(Rcv)of the PLS model was0.8395,and the root mean square error of cross validation(RMSECV)was16.2482.GA,SPA and CARS methods were used to select12,5,and26characteristic wavelengths.The PLS model based on CARS method was the best among the models developed,and its Rc,Rp,RMSEC and RMSEP values were0.8962,0.8892,10.7462%,and12.1453%,respectively.These results confirmed the feasibility of using hyperspectral imaging for the non-destructive detection of VC content in“Lingwu Changzao”jujubes.
关 键 词:灵武长枣 VC 可见-近红外高光谱成像 无损检测
分 类 号:TS255.7[轻工技术与工程—农产品加工及贮藏工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31