基于随机森林的低阶数字调制识别算法研究  被引量:11

Low-Order Digital Modulation Recognition Algorithm based on Random Forest

在线阅读下载全文

作  者:谭正骄 施继红[1] 胡继峰[1] TAN Zheng-jiao;SHI Ji-hong;HU Ji-feng(School of Information Science and Engineering,Yunnan University,Kunming Yunnan 650500,China)

机构地区:[1]云南大学信息学院,云南昆明650500

出  处:《通信技术》2018年第3期527-532,共6页Communications Technology

摘  要:针对低信噪比条件下一般调制识别算法识别率低的问题,对2ASK、2FSK等6种典型的低阶数字调制信号进行时域特征分析,提取出一组能够明显区分各调制方式的时域特征参数组成特征向量,辅助以随机森林算法,对6种典型的低阶数字调制信号进行自动分类识别。所提算法克服了决策树过拟合问题,具有特征参数提取简单、计算量小、易于实现、对噪声具有较好容忍性的优点,在低信噪比环境下有良好的识别效果。实验验证表明,在信噪比不小于-5 dB的条件下,所提算法对2FSK、BPSK、4FSK、QPSK的识别正确率可达78%以上;在信噪比不小于3 dB的条件下,所提算法的调制识别正确率达到100%。可见,所提算法对低信噪比条件下的识别性能具有极大的改善。Aiming at the problem of low recognition rate for general modulation recognition algorithm under low SNR conditions,6typical low-order digital modulation signals such as2ASK and2FSK are analyzed in time domain.A set of feature vectors which can clearly distinguish the time domain characteristic parameters of each modulation mode is extracted,and aided by random forest algorithm,while the6typical low-order digital modulation signals are automatically classified and identified.The proposed algorithm could overcome the over-fitting problem of decision tree,and possesses the advantages of simple featureparameter extraction,small computation,easy implementation,and good tolerance to noise,and again has good recognition effect in low SNR environment.The experiment indicates that the recognition accuracy of the proposed algorithm for2FSK,BPSK,4FSK and QPSK can reach more than78%under the condition that the SNR is not less than-5dB;under the condition that the SNR is not less than3dB,the correct modulation recognition rate can reach100%.It can be seen that the proposed algorithm can greatly improve the recognition performance under low SNR.

关 键 词:调制识别 时域特征 随机森林 信噪比 

分 类 号:TN911.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象