A Collaborative Filtering Recommendation Algorithm Based on the Difference and the Correlation of Users’Ratings  

在线阅读下载全文

作  者:Zhao-hui Cai Jing-song Wang Yong-kai Li Shu-bo Liu 

机构地区:[1]Computer School of Wuhan University,Wuhan,Hubei,China

出  处:《国际计算机前沿大会会议论文集》2017年第1期13-15,共3页International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)

摘  要:The traditional similarity algorithm in collaborative filtering mainly pay attention to the similarity or correlation of users’ratings,lacking the consideration of difference of users’ratings.In this paper,we divide the relationship of users’ratings into differential part and correlated part,proposing a similarity measurement based on the difference and the correlation of users’ratings which performs well with non-sparse dataset.In order to solve the problem that the algorithm is not accurate in spare dataset,we improve it by prefilling the vacancy of rating matrix.Experiment results show that this algorithm improves significantly the accuracy of the recommendation after prefilling the rating matrix.

关 键 词:COLLABORATIVE FILTERING DIFFERENCE CORRELATION Prefill 

分 类 号:G633.41[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象