检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭哲也 唐紫珺 谢民主[1] 赵方庆 Zheye Peng;Zijun Tang;Minzhu Xie(College of Physics and Information Science, Hunan Normal University, Changsha 410081, China)
机构地区:[1]湖南师范大学物理与信息科学学院,长沙410081 [2]不详
出 处:《遗传》2018年第3期218-226,共9页Hereditas(Beijing)
基 金:国家自然科学基金(编号:61772197,61370172)资助
摘 要:复杂疾病是基因与基因、基因与环境交互作用的结果,高维基因交互作用的探测给计算带来了极大的挑战。在过去20年间,机器学习方法被用于探测基因-基因交互作用,并取得了一定的效果。本文综述了机器学习方法在基因交互作用探测中的研究进展,系统地介绍了神经网络(neural networks,NN)、随机森林(random forest,RF)、支持向量机(support vector machines,SVM)和多因子降维法(multifactor dimensionality reduction,MDR)等机器学习方法在全基因组关联研究(genome wide association study,GWAS)中探测基因交互作用的原理和局限性,并对未来的研究进行了展望。Complex diseases are results of gene-gene and gene-environment interactions.However,the detection of high-dimensional gene-gene interactions is computationally challenging.In the last two decades,machine-learning approaches have been developed to detect gene-gene interactions with some successes.In this review,we summarize the progress in research on machine learning methods,as applied to gene-gene interaction detection.It systematically examines the principles and limitations of the current machine learning methods used in genome wide association studies(GWAS)to detect gene-gene interactions,such as neural networks(NN),random forest(RF),support vector machines(SVM)and multifactor dimensionality reduction(MDR),and provides some insights on the future research directions in the field.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70