融合灰度与显著性特征的空中红外目标跟踪  被引量:5

Aerial infrared target tracking based on gray and saliency features fusion

在线阅读下载全文

作  者:郑武兴 王春平 付强 徐艳 ZHENG Wu-xing;WANG Chun-ping;FU Qiang;XU Yan(Department of Electrics and Optics Engineering,Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China)

机构地区:[1]陆军工程石家庄校区电子与光学工程系,河北石家庄050003

出  处:《激光与红外》2018年第3期338-342,共5页Laser & Infrared

基  金:国家自然科学基金项目(No.61141009)资助

摘  要:针对红外目标特征简单且信息量少导致跟踪精度不高,提出一种基于灰度和显著性特征融合的核相关滤波算法用于空中红外目标跟踪。首先,在保证目标足够特征信息量的前提下对较大的目标进行不同等级压缩。然后将提取的二维灰度特征与显著性特征按页方式进行拼接扩展成三维特征,再将融合的特征用于核相关滤波。实验表明所提算法能够适应多种环境下的空中红外目标跟踪,跟踪精度和成功率典型值分别达到84.8%和63.9%,较大部分算法有很大提高,平均跟踪速度高达125 f/s,体现出了良好的实时性。因此,本文提出的算法在保证实时性的同时提高了跟踪的可靠性,具有一定的实用意义。As simple feature and less information of infrared target lead to low tracking accuracy,a kernel correlation filtering algorithm based on gray and significant features fusion is proposed for aerial infrared target tracking.First of a ll,under the premise of ensuring enough target feature information,the larger target is compressed at different levels.Then,the extracted two-dimensional gray feature and saliency feature are spliced into three-dimensional features by page,and then the fusion features are used for kernel correlation filtering.The experimental results show that the proposed algorithm can adapt aerial infrared target tracking under a variety of environments,and the typical values of tracking accuracy and success rate reach84.8%and63.9%respectively.The average tracking speed reaches up to125frames per second,which reflects the good real-time.Therefore,the proposed algorithm can improve the tracking reliability and the real-time performance,and has a certain practical value.

关 键 词:红外目标跟踪 显著性特征 特征融合 核相关滤波 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象