重症监护病人脑电数据的自动聚类分析(英文)  被引量:1

Automatic clustering of EEG data from ICU patients

在线阅读下载全文

作  者:Jin Jing Emile D′angremonta Senan Ebrahim Mohammad Ghassemi Eric Rosenthal Sahar Zafar M.Brandon Westover 

机构地区:[1]哈佛医学院/麻省总医院神经内科,美国波士顿02114 [2]乌得勒支大学理学院,荷兰乌得勒支80125 [3]麻省理工学院理学院,美国波士顿02114

出  处:《西北大学学报(自然科学版)》2018年第1期6-9,共4页Journal of Northwest University(Natural Science Edition)

基  金:国家自然科学基金资助项目(61473223));陕西省产学研协同创新计划基金资助项目(2017XT-016);陕西省重点研发计划基金资助项目(2017ZDXM-GY-095)

摘  要:癫痫性发作、持续状态及痫样节律性活动是常见的病理性脑部放电状态,通常会在急性脑损伤患者的脑电图(EEG)中表现出来。完成此类病理性波形的有效标记,是进一步诊断与治疗相关疾病的重要前提。为辅助神经内科专家对不同病理波形进行快速标记,文中提出了一种全新的辅助检测标记系统。该系统分别采用特征提取、PCA降维和LE映射可视化等技术,实现EEG中同质模式簇的自动检测。所提方法对哈佛医学院/麻省总医院中10例ICU患者的长时程连续脑电图进行了系统分析。数值实验结果表明,海量脑电数据能够被有效地自动聚类为多种ICU典型标准波形,而且仅通过观测类中心及若干同类成员就能够达到有效标记的目标。同时,LE可视化结果也进一步证实了"发作间期-发作期"连续统假设是成立的。Seizures,status epilepticus,and seizure-like rhythmic or periodic activity are common,pathological,and harmful states of brain electrical activity seen in the electroencephalogram(EEG)of patients during critical medical illnesses or acute brain injury.In this study,we aimed to develop a valid method to automatically discover a small number of homogeneous pattern clusters,to facilitate efficient interactive labelling by EEG experts.Long term continuous EEG of ten ICU patients at MGH were analysed,undergoing the pipeline of feature extraction,PCA-based dimensionality reduction,and embedding through LE map.This research suggests that large EEG datasets can be automatically clustered into a small number of patterns described by standard ICU EEG pattern labels.We demonstrated efficient cluster labelling by inspecting only the centroids of clusters.Furthermore,LE visualizations support the hypothesis of an interictal-ictal continuum.

关 键 词:聚类 重症监护 脑电图 发作 “发作间期-发作期”连续统假设 评分者间统一度 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象