基于AP聚类RBF神经网络的改进算法及试验  被引量:2

Improved Algorithm and Experiment of RBF Neural Network Based on AP Clustering

在线阅读下载全文

作  者:刘小锋 冯志敏[1] 陈跃华[1] 张刚[1] 李宏伟 LIU Xiaofeng;FENG Zhimin;CHEN Yuehua;ZHANG Gang;LI Hongwei(Maritime College,Ningbo University,Ningbo Zhejiang 315211,China;Ningbo Shan Gong Intelligent Security Technology,Co,Ltd,Ningbo Zhejiang 315100,China)

机构地区:[1]宁波大学海运学院,浙江宁波315211 [2]宁波杉工智能安全科技股份有限公司,浙江宁波315100

出  处:《传感技术学报》2018年第3期408-414,共7页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金项目(51675286)

摘  要:针对AP聚类RBF神经网络在车辆动态称重应用中精度偏低问题,提出按一定步长,迭代增加偏向参数,以RBF神经网络测试误差为评价指标最终确定偏向参数的改进算法,使RBF神经网络获得合适的隐含层节点数;提出对测试样本进行归类插值分析,利用与测试样本至类代表点间距离最接近的两个训练样本实际连接权值,使RBF神经网络连接权值随测试样本改变的自适应功能。在车速10 km/h^50 km/h,温度16℃~29℃条件下,对5种不同载重车辆进行工程实测试验,构建车辆动态称重RBF神经网络模型,进行500次循环测试。试验表明,基于AP聚类RBF神经网络的改进算法使称重误差均值控制在0.06%以内,最大实时性均值为0.022 3,能有效满足实际工程应用要求。An improved algorithm is proposed to solve the lower application precision of radical basis function(RBF)neural network based on affinity propagation(AP)clustering on the vehicle weigh-in-motion.This algorithm takes RBF neural network test error as the criteria to increase iteratively the preference which is obtained with fixed step length.In this way,appropriate hidden layer nodes are obtained.Classification and interpolation analysis of test sample is carried out based on the actual connection weight of two training samples which are nearest between the exemplar and the test sample,making the connection weight can be adjusted adaptively with the test sample.Five vehicles with different loads are considered in the actual engineering test when the vehicle speed is ranged from 10 km/h to 50 km/h while the temperature shifts from 16℃to 29℃.According to 500 cycle tests,the RBF neural network model of vehicle weigh-in-motion is constructed.The experiment results show that the averaged weighing error of the proposed algorithm is less than 0.06%and the averaged value of the maximum real-time is 0.022 3,meeting effectively the practical engineering requirements.

关 键 词:AP聚类 RBF神经网络 动态称重 偏向参数 连接权值 实时性 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置] U445[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象